skip to main content

Title: Anharmonic contribution to the stabilization of Mg(OH) 2 from first principles
Geometrical and vibrational characterization of magnesium hydroxide was performed using density functional theory. Four possible crystal symmetries were explored: P 3̄ (No. 147, point group −3), C 2/ m (No. 12, point group 2), P 3 m 1 (No. 156, point group 3 m ) and P 3̄ m 1 (No. 164, point group −3 m ) which are the currently accepted geometries found in the literature. While a lot of work has been performed on Mg(OH) 2 , in particular for the P 3̄ m 1 phase, there is still a debate on the observed ground state crystal structure and the anharmonic effects of the OH vibrations on the stabilization of the crystal structure. In particular, the stable positions of hydrogen are not yet defined precisely, which have implications in the crystal symmetry, the vibrational excitations, and the thermal stability. Previous work has assigned the P 3̄ m 1 polymorph as the low energy phase, but it has also proposed that hydrogens are disordered and they could move from their symmetric position in the P 3̄ m 1 structure towards P 3̄. In this paper, we examine the stability of the proposed phases by using different descriptors. We compare more » the XRD patterns with reported experimental results, and a fair agreement is found. While harmonic vibrational analysis shows that most phases have imaginary modes at 0 K, anharmonic vibrational analysis indicates that at room temperature only the C 2/ m phase is stabilized, whereas at higher temperatures, other phases become thermally competitive. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1740111 1434897
Publication Date:
NSF-PAR ID:
10072413
Journal Name:
Physical Chemistry Chemical Physics
Volume:
20
Issue:
26
Page Range or eLocation-ID:
17799 to 17808
ISSN:
1463-9076
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a systematic investigation of thermodynamic stability, phase-reaction, and chemical activity of Al containing disordered Ti 2 (Al-Ga)C MAX phases using machine-learning driven high-throughput framework to understand the oxidation resistance behavior with increasing temperature and exposure to static oxygen. The A-site (at Al) disordering in  Ti 2 AlC MAX (M=Ti, A=Al, X=C) with Ga shows significant change in the chemical activity of Al with increasing temperature and exposure to static oxygen, which is expected to enable surface segregation of Al, thereby, the formation of Al 2 O 3 and improved oxidation resistance. We performed in-depth convex hull analysis ofmore »ternary Ti–Al–C, Ti–Ga–C, and Ti–Al–Ga–C based MAX phase, and provide detailed contribution arising from electronic, chemical and vibrational entropies. The thermodynamic analysis shows change in the Gibbs formation enthalpy (Δ G form ) at higher temperatures, which implies an interplay of temperature-dependent enthalpy and entropic contributions in oxidation resistance Ga doped Ti 2 AlC MAX phases. A detailed electronic structure and chemical bonding analysis using crystal orbital Hamilton population method reveal the origin of change in phases stability and in oxidation resistance in disorder Ti 2 (Al 1−x Ga x )C MAX phases. Our electronic structure analysis correlate well with the change in oxidation resistance of Ga doped MAX phases. We believe our study provides a useful guideline to understand to role of alloying on electronic, thermodynamic, and oxidation related mechanisms of bulk MAX phases, which can work as a precursor to understand oxidation behavior of two-dimensional MAX phases, i.e., MXenes (transition metal carbides, carbonitrides and nitrides).« less
  2. A series of new Ce( iv ) based fluorides with two different compositions, Cs 2 MCe 3 F 16 (M = Ni 2+ , Co 2+ , Mn 2+ , and Zn 2+ ) and Na 3 MCe 6 F 30 (M = Al 3+ , Ga 3+ , Fe 3+ , and Cr 3+ ) were synthesized as high quality single crystals via a mild hydrothermal route. The compounds with the composition Cs 2 MCe 3 F 16 (M = Ni 2+ , Co 2+ , Mn 2+ , and Zn 2+ ) crystallize in the hexagonal crystal systemmore »with space group P 6 3 / mmc and are isotypic with the uranium analogs, whereas the Na 3 MCe 6 F 30 (M = Al 3+ , Ga 3+ , Fe 3+ , and Cr 3+ ) compounds crystallize in the trigonal space group P 3̄ c 1 and are isotypic with the uranium and thorium analogs Na x MM′ 6 F 30 (M′ = Th, U). The Cs 2 MCe 3 F 16 compounds exhibit a complex 3D crystal structure constructed of edge-sharing cerium trimers, in which all three Ce atoms share a common μ 3 -F unit. The Na 3 MCe 6 F 30 compounds are constructed of edge- and vertex-sharing cerium polyhedra connected to each other to form Ce 6 F 30 6− framework, which can accommodate only relatively smaller trivalent cations (M 3+ = Al 3+ , Ga 3+ , Fe 3+ , and Cr 3+ ) as compared to uranium and thorium analogs. Magnetic susceptibility measurements were carried out on the samples of Cs 2 MCe 3 F 16 (M = Ni 2+ and Co 2+ ), which exhibit paramagnetic behavior.« less
  3. FeAs 2−x Se x ( x = 0.30–1.0) samples were synthesized as phase pure powders by conventional solid-state techniques and as single crystals ( x = 0.50) from chemical vapor transport. The composition of the crystals was determined to be Fe 1.025(3) As 1.55(3) Se 0.42(3) , crystallizing in the marcasite structure type, Pnnm space group. FeAs 2−x Se x (0 < x < 1) was found to undergo a marcasite-to-arsenopyrite ( P 2 1 / c space group) structural phase transition at x ∼ 0.65. The structures are similar, with the marcasite structure best described as a solid solutionmore »of As/Se, whereas the arsenopyrite has ordered anion sites. Magnetic susceptibility and thermoelectric property measurements from 300–2 K were performed on single crystals, FeAs 1.50 Se 0.50 . Paramagnetic behavior is observed from 300 to 17 K and a Seebeck coefficient of −33 μV K −1 , an electrical resistivity of 4.07 mΩ cm, and a very low κ l of 0.22 W m −1 K −1 at 300 K are observed. In order to determine the impact of the structural transition on the high-temperature thermoelectric properties, polycrystalline FeAs 2−x Se x ( x = 0.30, 0.75, 0.85, 1.0) samples were consolidated into dense pellets for measurements of thermoelectric properties. The x = 0.85 sample shows the best thermoelectric performance. The electronic structure of FeAsSe was calculated with DFT and transport properties were approximately modeled above 500 K.« less
  4. Understanding H 2 binding and activation is important in the context of designing transition metal catalysts for many processes, including hydrogenation and the interconversion of H 2 with protons and electrons. This work reports the first thermodynamic and kinetic H 2 binding studies for an isostructural series of first-row metal complexes: NiML, where M = Al ( 1 ), Ga ( 2 ), and In ( 3 ), and L = [N( o -(NCH 2 P i Pr 2 )C 6 H 4 ) 3 ] 3− . Thermodynamic free energies (Δ G °) and free energies of activation (Δmore »G ‡ ) for binding equilibria were obtained via variable-temperature 31 P NMR studies and lineshape analysis. The supporting metal exerts a large influence on the thermodynamic favorability of both H 2 and N 2 binding to Ni, with Δ G ° values for H 2 binding found to span nearly the entire range of previous reports. The non-classical H 2 adduct, (η 2 -H 2 )NiInL ( 3 -H 2 ), was structurally characterized by single-crystal neutron diffraction—the first such study for a Ni(η 2 -H 2 ) complex or any d 10 M(η 2 -H 2 ) complex. UV-Vis studies and TD-DFT calculations identified specific electronic structure perturbations of the supporting metal which poise NiML complexes for small-molecule binding. ETS-NOCV calculations indicate that H 2 binding primarily occurs via H–H σ-donation to the Ni 4p z -based LUMO, which is proposed to become energetically accessible as the Ni(0)→M( iii ) dative interaction increases for the larger M( iii ) ions. Linear free-energy relationships are discussed, with the activation barrier for H 2 binding (Δ G ‡ ) found to decrease proportionally for more thermodynamically favorable equilibria. The Δ G ° values for H 2 and N 2 binding to NiML complexes were also found to be more exergonic for the larger M( iii ) ions.« less
  5. In this paper, the photoluminescent properties of a lead-free double perovskite Cs 2 NaInCl 6 doped with Sb 3+ are explored. The host crystal structure is a cubic double perovskite with Fm 3̄ m symmetry, a = 10.53344(4) Å, and rock salt ordering of Na + and In 3+ . It is a wide bandgap compound ( E g ≈ 5.1 eV), and substitution with Sb 3+ leads to strong absorption in the UV due to localized 5s 2 → 5s 1 5p 1 transitions on Sb 3+ centers. Radiative relaxation back to the 5s 2 ground state, via amore »3 P 1 → 1 S 0 transition, leads to intense blue luminescence, centered at 445 nm, with a photoluminescent quantum yield of 79%. The Stokes shift of 0.94 eV is roughly 33% smaller than it is in the related vacancy ordered double perovskite Cs 2 SnCl 6 . The reduction in Stokes shift is likely due to a change in coordination number of Sb 3+ from 6-coordinate in Cs 2 NaInCl 6 to 5-coordinate in Cs 2 SnCl 6 . In addition to the high quantum yield, Cs 2 NaInCl 6 :Sb 3+ exhibits excellent air/moisture stability and can be prepared from solution; these characteristics make it a promising blue phosphor for applications involving near-UV excitation.« less