skip to main content

Title: Modeling Aggregate Interference with Heterogeneous Secondary Users and Passive Primary Users for Dynamic Admission and Power Control in TV Spectrum
Interference management in current TV white space and Citizens Broadband Radio Service networks is mainly based on geographical separation of primary and secondary users. This approach overprotects primary users at the cost of available spectrum for secondary users. Potential solutions include acquiring more primary user information, such as a measurement-enhanced geographical database, and cooperative primary user, such as the TV set feedback in the next generation TV systems. However, one challenge of these solutions is to effectively manage the aggregate interference at TV receivers from interweaving secondary users. In this paper, a stochastic geometry-based aggregate interference model is developed for unlicensed spectrum shared by heterogeneous secondary users that have various transmit powers and multi-antenna capabilities. Moreover, an efficient computation approach is presented to capture network dynamics in real-time via a down-sampling that preserves high-quantile precision of the model. The stochastic geometry-based model is verified experimentally in ISM band. It is shown that the model enables separate control of admission and transmit power of multiple co-located secondary networks to protect primary users and maximize spectrum utilization.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
International Balkan Conference on Communications and Networking
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As several new spectrum bands are opening up for shared use, a new paradigm of Diverse Band-aware Dynamic Spectrum Access (d-DSA) has emerged. d-DSA equips a secondary device with software defined radios (SDRs) and utilize whitespaces (or idle channels) in multiple bands, including but not limited to TV, LTE, Citizen Broadband Radio Service (CBRS), unlicensed ISM. In this paper, we propose a decentralized, online multi-agent reinforcement learning based cross-layer BAnd selection and Routing Design (BARD) for such d-DSA networks. BARD not only harnesses whitespaces in multiple spectrum bands, but also accounts for unique electro-magnetic characteristics of those bands to maximize the desired quality of service (QoS) requirements of heterogeneous message packets; while also ensuring no harmful interference to the primary users in the utilized band. Our extensive experiments demonstrate that BARD outperforms the baseline dDSAaR algorithm in terms of message delivery ratio, however, at a relatively higher network latency, for varying number of primary and secondary users. Furthermore, BARD greatly outperforms its single-band DSA variants in terms of both the metrics in all considered scenarios. 
    more » « less
  2. null (Ed.)
    This paper assesses the feasibility of a novel dynamic spectrum sharing approach for a cellular downlink based on cognitive overlay to allow non-orthogonal cellular transmissions from a primary and a secondary radio access technology concurrently on the same radio resources. The 2-user Gaussian cognitive interference channel is used to model a downlink scenario in which the primary and secondary base stations are co-located. A system architecture is defined that addresses practical challenges associated with cognitive overlay, in particular the noncausal knowledge of the primary user message at the cognitive transmitter. A cognitive overlay scheme is applied that combines superposition coding with dirty paper coding, and a primary user protection criterion is derived that is specific to a scenario in which the primary system is 4G while the secondary system is 5G. Simulation is used to evaluate the achievable signal-to-interference-plus-noise ratio (SINR) at the 4G and 5G receivers, as well as the cognitive power allocation parameter as a function of distance. Results suggest that the cognitive overlay scheme is feasible when the distance to the 5G receiver is relatively small, even when a large majority of the secondary user transmit power is allocated to protecting the primary user transmission. Achievable link distances for the 5G receiver are on the order of hundreds of meters for an urban macrocell or a few kilometers for a rural macrocell. 
    more » « less
  3. This paper proposes a novel cognitive cooperative transmission scheme by exploiting massive multiple-input multiple-output (MMIMO) and non-orthogonal multiple access (NOMA) radio technologies, which enables a macrocell network and multiple cognitive small cells to cooperate in dynamic spectrum sharing. The macrocell network is assumed to own the spectrum band and be the primary network (PN), and the small cells act as the secondary networks (SNs). The secondary access points (SAPs) of the small cells can cooperatively relay the traffic for the primary users (PUs) in the macrocell network, while concurrently accessing the PUs’ spectrum to transmit their own data opportunistically through MMIMO and NOMA. Such cooperation creates a “win-win” situation: the throughput of PUs will be significantly increased with the help of SAP relays, and the SAPs are able to use the PU’s spectrum to serve their secondary users (SUs). The interplay of these advanced radio techniques is analyzed in a systematic manner, and a framework is proposed for the joint optimization of cooperative relay selection, NOMA and MMIMO transmit power allocation, and transmission scheduling. Further, to model network-wide cooperation and competition, a two-sided matching algorithm is designed to find the stable partnership between multiple SAPs and PUs. The evaluation results demonstrate that the proposed scheme achieves significant performance gains for both primary and secondary users, compared to the baselines. 
    more » « less
  4. Abstract

    Sixth-generation wireless networks will aggregate higher-than-ever mobile traffic into ultra-high capacity backhaul links, which could be deployed on the largely untapped spectrum above 100 GHz. Current regulations however prevent the allocation of large contiguous bands for communications at these frequencies, since several narrow bands are reserved to protect passive sensing services. These include radio astronomy and Earth exploration satellites using sensors that suffer from harmful interference from active transmitters. Here we show that active and passive spectrum sharing above 100 GHz is feasible by introducing and experimentally evaluating a real-time, dual-band backhaul prototype that tracks the presence of passive users (in this case the NASA satellite Aura) and avoids interference by automatically switching bands (123.5–140 GHz and 210–225 GHz). Our system enables wide-band transmissions in the above-100-GHz spectrum, while avoiding harmful interference to satellite systems, paving the way for innovative spectrum policy and technologies in these crucial bands.

    more » « less
  5. To protect primary users from interference caused by secondary users (SUs) in a cognitive radio network, a geographic area called an exclusion zone can be defined in which SUs are prohibited from transmitting using a specified spectrum band. We propose a Gaussian Random Field Model (GRFM) framework for determining an exclusion zone with the desired properties in practical scenarios where analytical specifications may not be available. Based on the GRFM, we derive the radius of a disk determining the exclusion zone, assuming that the SUs are distributed geographically over a planar coverage area. Using measurement data obtained from SUs, the GRFM is applied to approximate the equivalent received signal power and aggregate interference at specified locations. Simulation results show that the GRFM approximation yields an accurate characterization of the exclusion zone. 
    more » « less