The gradual deployment of intelligent and coordinated devices in the electrical power system needs careful investigation of the interactions between the various domains involved. Especially due to the coupling between ICT and power systems a holistic approach for testing and validating is required. Taking existing (quasi-) standardised smart grid system and test specification methods as a starting point, we are developing a holistic testing and validation approach that allows a very flexible way of assessing the system level aspects by various types of experiments (including virtual, real, and mixed lab settings). This paper describes the formal holistic test case specification method and applies it to a particular co-simulation experimental setup. The various building blocks of such a simulation (i.e., FMI, mosaik, domain-specific simulation federates) are covered in more detail. The presented method addresses most modeling and specification challenges in cyber-physical energy systems and is extensible for future additions such as uncertainty quantification. 
                        more » 
                        « less   
                    
                            
                            Towards a Design Studio for Collaborative Modeling and Co-Simulations of Mixed Electrical Energy Systems
                        
                    
    
            Despite the known benefits of simulations in the study of mixed energy systems in the context of smart grid, the lack of collaboration facilities between multiple domain experts prevents a holistic analysis of smart grid operations. Current solutions do not provide a unified tool-chain that supports a secure and collaborative platform for not only the modeling and simulation of mixed electrical energy systems, but also the elastic execution of co-simulation experiments. To address above limitations, this paper proposes a design studio that provides an online collaborative platform for modeling and simulation of smart grids with mixed energy resources. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1743772
- PAR ID:
- 10076180
- Date Published:
- Journal Name:
- Third International Workshop on Science of Smart City Operations and Platforms Engineering (SCOPE)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The NIST Transactive Energy (TE) Modeling and Simulation Challenge for the Smart Grid (Challenge) spanned from 2015 to 2018. The TE Challenge was initiated to identify simulation tools and expertise that might be developed or combined in co-simulation platforms to enable the evaluation of transactive energy approaches. Phase I of the Challenge spanned 2015 to 2016, with team efforts that improved understanding of TE concepts, identified relevant simulation tools and co-simulation platforms, and inspired the development of a TE co-simulation abstract component model that paved the way for Phase II. The Phase II effort spanned Spring 2017 through Spring 2018, where the teams collaboratively developed a specific TE problem scenario, a common grid topology, and common reporting metrics to enable direct comparison of results from simulation of each team's TE approach for the defined scenario.This report presents an overview of the TE Challenge, the TE abstract component model, and the common scenario.It also compiles the individual Challenge participants' research reports from Phase II. The common scenario involves a weather event impacting a distribution grid with very high penetration of photovoltaics, leading to voltage regulation challenges that are to be mitigated by TE methods. Four teams worked with this common scenario and different TE models to incentivize distributed resource response to voltage deviations, performing these simulations on different simulation platforms. A fifth team focused on a co-simulation platform that can be used for online TE simulations with existing co-simulation components. The TE Challenge Phase II has advanced co-simulation modeling tools and platforms for TE system performance analysis, developed a referenceable TE scenario that can support ongoing comparative simulations, and demonstrated various TE approaches for managing voltage on a distribution grid with high penetration of photovoltaics.more » « less
- 
            Most of the traditional state estimation algorithms are provided false alarm when there is attack. This paper proposes an attack-resilient algorithm where attack is automatically ignored, and the state estimation process is continuing which acts a grid-eye for monitoring whole power systems. After modeling the smart grid incorporating distributed energy resources, the smart sensors are deployed to gather measurement information where sensors are prone to attacks. Based on the noisy and cyber attack measurement information, the optimal state estimation algorithm is designed. When the attack is happened, the measurement residual error dynamic goes high and it can ignore using proposed saturation function. Moreover, the proposed saturation function is automatically computed in a dynamic way considering residual error and deigned parameters. Combing the aforementioned approaches, the Kalman filter algorithm is modified which is applied to the smart grid state estimation. The simulation results show that the proposed algorithm provides high estimation accuracy.more » « less
- 
            Smart grid systems are characterized by high complexity due to interactions between a traditional passive network and active power electronic components, coupled using communication links. Additionally, automation and information technology plays an important role in order to operate and optimize such cyber-physical energy systems with a high(er) penetration of fluctuating renewable generation and controllable loads. As a result of these developments the validation on the system level becomes much more important during the whole engineering and deployment process, today. In earlier development stages and for larger system configurations laboratory-based testing is not always an option. Due to recent developments, simulation-based approaches are now an appropriate tool to support the development, implementation, and roll-out of smart grid solutions. This paper discusses the current state of simulation-based approaches and outlines the necessary future research and development directions in the domain of power and energy systems.more » « less
- 
            With the advent of remarkable development of solar power panel and inverter technology and focus on reducing greenhouse emissions, there is increased migration from fossil fuels to carbon-free energy sources (e.g., solar, wind, and geothermal). A new paradigm called Transactive Energy (TE) [3] has emerged that utilizes economic and control techniques to effectively manage Distributed Energy Resources (DERs). Another goal of TE is to improve grid reliability and efficiency. However, to evaluate various TE approaches, a comprehensive simulation tool is needed that is easy to use and capable of simulating the power-grid along with various grid operational scenarios that occur in the transactive energy paradigm. In this research, we present a web-based design and simulation platform (called a design studio) targeted toward evaluation of power-grid distribution system and transactive energy approaches [1]. The design studio allows to edit and visualize existing power-grid models graphically, create new power-grid network models, simulate those networks, and inject various scenario-specific perturbations to evaluate specific configurations of transactive energy simulations. The design studio provides (i) a novel Domain-Specific Modeling Language (DSML) using the Web-based Generic Modeling Environment (WebGME [4]) for the graphical modeling of power-grid, cyber-physical attacks, and TE scenarios, and (ii) a reusable cloud-hosted simulation backend using the Gridlab-D power-grid distribution system simulation tool [2].more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    