skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tunable Orthogonal Reversible Covalent (TORC) Bonds: Dynamic Chemical Control over Molecular Assembly
Abstract Dynamic assembly of macromolecules in biological systems is one of the fundamental processes that facilitates life. Although such assembly most commonly uses noncovalent interactions, a set of dynamic reactions involving reversible covalent bonding is actively being exploited for the design of functional materials, bottom‐up assembly, and molecular machines. This Minireview highlights recent implementations and advancements in the area of tunable orthogonal reversible covalent (TORC) bonds for these purposes, and provides an outlook for their expansion, including the development of synthetically encoded polynucleotide mimics.  more » « less
Award ID(s):
1720595
PAR ID:
10078486
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
58
Issue:
1
ISSN:
1433-7851
Page Range / eLocation ID:
p. 74-85
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Covering an exceptionally wide range of bond strengths, the dynamic nature and facile tunability of dative B−N bonds is highly attractive when it comes to the assembly of supramolecular polymers and materials. This Minireview offers an overview of advances in the development of functional materials where Lewis pairs (LPs) play a key role in their assembly and critically influence their properties. Specifically, we describe the reversible assembly of linear polymers with interesting optical, electronic and catalytic properties, discrete macrocycles and molecular cages that take up diverse guest molecules and undergo structural changes triggered by external stimuli, covalent organic frameworks (COFs) with intriguing interlocked structures that can embed and separate gases such as CO2and acetylene, and soft polymer networks that serve as recyclable, self‐healing, and responsive thermosets, gels and elastomeric materials. 
    more » « less
  2. Abstract Current efforts in the proteolysis targeting chimera (PROTAC) field mostly focus on choosing an appropriate E3 ligase for the target protein, improving the binding affinities towards the target protein and the E3 ligase, and optimizing the PROTAC linker. However, due to the large molecular weights of PROTACs, their cellular uptake remains an issue. Through comparing how different warhead chemistry, reversible noncovalent (RNC), reversible covalent (RC), and irreversible covalent (IRC) binders, affects the degradation of Bruton’s Tyrosine Kinase (BTK), we serendipitously discover that cyano-acrylamide-based reversible covalent chemistry can significantly enhance the intracellular accumulation and target engagement of PROTACs and develop RC-1 as a reversible covalent BTK PROTAC with a high target occupancy as its corresponding kinase inhibitor and effectiveness as a dual functional inhibitor and degrader, a different mechanism-of-action for PROTACs. Importantly, this reversible covalent strategy is generalizable to improve other PROTACs, opening a path to enhance PROTAC efficacy. 
    more » « less
  3. A highly flexible covalent organic framework demonstrating dynamic and largest reversible thermal conductivity switching ratios shown thus far in any material system with immense potential for application in thermal management of microelectronics. 
    more » « less
  4. Abstract Inspired by protein polymerizations, much progress has been made in making “polymer‐like” supramolecular structures from small synthetic subunits through non‐covalent bonds. A few regulation mechanisms have also been explored in synthetic platforms to create supramolecular polymers and materials with dynamic properties. Herein, a type of reactive regulator that facilitates the dimerization of the monomer precursors through dynamic bonds to trigger the supramolecular assembly from small molecules in an aqueous solution is described. The supramolecular structures are crystalline in nature and the reaction coupled assembly strategy can be extended to a supramolecular assembly of aromatic amide derivatives formed in‐situ. The method may be instructive for the development of supramolecular nanocrystalline materials with desired physical properties. 
    more » « less
  5. Abstract Covalent adaptable networks (CANs) based on the thiol–Michael (TM) linkages can be thermal and pH responsive. Here, a new vinyl‐sulfone‐based thiol–Michael crosslinker is synthesized and incorporated into acrylate‐based CANs to achieve stable materials with dynamic properties. Because of the reversible TM linkages, excellent temperature‐responsive re‐healing and malleability properties are achieved. In addition, for the first time, a photoresponsive coumarin moiety is incorporated with TM‐based CANs to introduce light‐mediated reconfigureability and postpolymerization crosslinking. Overall, these materials can be on demand dynamic in response to heat and light but can retain mechanical stability at ambient condition. 
    more » « less