skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fair and Efficient Memory Sharing: Confronting Free Riders
A cache memory unit needs to be shared among n strategic agents. Each agent has different preferences over the files to be brought into memory. The goal is to design a mechanism that elicits these preferences in a truthful manner and outputs a fair and efficient memory allocation. A trivially truthful and fair solution would isolate each agent to a 1/n fraction of the memory. However, this could be very inefficient if the agents have similar preferences and, thus, there is room for cooperation. On the other hand, if the agents are not isolated, unless the mechanism is carefully designed, they have incentives to misreport their preferences and free ride on the files that others bring into memory. In this paper we explore the power and limitations of truthful mechanisms in this setting.We demonstrate that mechanisms blocking agents from accessing parts of the memory can achieve improved efficiency guarantees, despite the inherent inefficiencies of blocking.  more » « less
Award ID(s):
1755955
PAR ID:
10087138
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the ... AAAI Conference on Artificial Intelligence
ISSN:
2374-3468
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We revisit the well-studied problem of designing mechanisms for one-sided matching markets, where a set of n agents needs to be matched to a set of n heterogeneous items. Each agent i has a value vij for each item j, and these values are private information that the agents may misreport if doing so leads to a preferred outcome. Ensuring that the agents have no incentive to misreport requires a careful design of the matching mechanism, and mechanisms proposed in the literature mitigate this issue by eliciting only the ordinal preferences of the agents, i.e., their ranking of the items from most to least preferred. However, the efficiency guarantees of these mechanisms are based only on weak measures that are oblivious to the underlying values. In this paper we achieve stronger performance guarantees by introducing a mechanism that truthfully elicits the full cardinal preferences of the agents, i.e., all of the vij values. We evaluate the performance of this mechanism using the much more demanding Nash bargaining solution as a benchmark, and we prove that our mechanism significantly outperforms all ordinal mechanisms (even non-truthful ones). To prove our approximation bounds, we also study the population monotonicity of the Nash bargaining solution in the context of matching markets, providing both upper and lower bounds which are of independent interest. 
    more » « less
  2. Peer prediction aims to incentivize truthful reports from agents whose reports cannot be assessed with any objective ground truthful information. In the multi-task setting where each agent is asked multiple questions, a sequence of mechanisms have been proposed which are truthful — truth-telling is guaranteed to be an equilibrium, or even better, informed truthful — truth-telling is guaranteed to be one of the best-paid equilibria. However, these guarantees assume agents’ strategies are restricted to be task-independent: an agent’s report on a task is not affected by her information about other tasks. We provide the first discussion on how to design (informed) truthful mechanisms for task-dependent strategies, which allows the agents to report based on all her information on the assigned tasks. We call such stronger mechanisms (informed) omni-truthful. In particular, we propose the joint-disjoint task framework, a new paradigm which builds upon the previous penalty-bonus task framework. First, we show a natural reduction from mechanisms in the penalty-bonus task framework to mechanisms in the joint-disjoint task framework that maps every truthful mechanism to an omni-truthful mechanism. Such a reduction is non-trivial as we show that current penalty-bonus task mechanisms are not, in general, omni-truthful. Second, for a stronger truthful guarantee, we design the matching agreement (MA) mechanism which is informed omni-truthful. Finally, for the MA mechanism in the detail-free setting where no prior knowledge is assumed, we show how many tasks are required to (approximately) retain the truthful guarantees. 
    more » « less
  3. We study fair resource allocation with strategic agents. It is well-known that, across multiple fundamental problems in this domain, truthfulness and fairness are incompatible. For example, when allocating indivisible goods, no truthful and deterministic mechanism can guarantee envy-freeness up to one item (EF1), even for two agents with additive valuations. Or, in cake-cutting, no truthful and deterministic mechanism always outputs a proportional allocation, even for two agents with piecewise constant valuations. Our work stems from the observation that, in the context of fair division, truthfulness is used as a synonym for Dominant Strategy Incentive Compatibility (DSIC), requiring that an agent prefers reporting the truth, no matter what other agents report.In this paper, we instead focus on Bayesian Incentive Compatible (BIC) mechanisms, requiring that agents are better off reporting the truth in expectation over other agents' reports. We prove that, when agents know a bit less about each other, a lot more is possible: using BIC mechanisms we can achieve fairness notions that are unattainable by DSIC mechanisms in both the fundamental problems of allocation of indivisible goods and cake-cutting. We prove that this is the case even for an arbitrary number of agents, as long as the agents' priors about each others' types satisfy a neutrality condition. Notably, for the case of indivisible goods, we significantly strengthen the state-of-the-art negative result for efficient DSIC mechanisms, while also highlighting the limitations of BIC mechanisms, by showing that a very general class of welfare objectives is incompatible with Bayesian Incentive Compatibility. Combined, these results give a near-complete picture of the power and limitations of BIC and DSIC mechanisms for the problem of allocating indivisible goods. 
    more » « less
  4. We study the group-fair obnoxious facility location problems from the mechanism design perspective where agents belong to different groups and have private location preferences on the undesirable locations of the facility. Our main goal is to design strategyproof mechanisms that elicit the true location preferences from the agents and determine a facility location that approximately optimizes several group-fair objectives. We first consider the maximum total and average group cost (group-fair) objectives. For these objectives, we propose deterministic mechanisms that achieve 3-approximation ratios and provide matching lower bounds. We then provide the characterization of 2-candidate strategyproof randomized mechanisms. Leveraging the characterization, we design randomized mechanisms with improved approximation ratios of 2 for both objectives. We also provide randomized lower bounds of 5/4 for both objectives. Moreover, we investigate intergroup and intragroup fairness (IIF) objectives, addressing fairness between groups and within each group. We present a mechanism that achieves a 4-approximation for the IIF objectives and provide tight lower bounds. 
    more » « less
  5. We study the group-fair multi-period mobile facility location problems, where agents from different groups are located on a real line and arrive in different periods. Our goal is to locate k mobile facilities at each period to serve the arriving agents in order to minimize the maximum total group-fair cost and the maximum average group-fair cost objectives that measure the costs or distances of groups of agents to their corresponding facilities across all periods. We first consider the problems from the algorithmic perspective for both group-fair cost objectives. We then consider the problems from the mechanism design perspective, where the agents' locations and arrival periods are private. For both objectives, we design deterministic strategyproof mechanisms to elicit the agents' locations and arrival periods truthfully while optimizing the group-fair cost objectives and show that our mechanisms have almost tight bounds on the approximation ratios for certain periods and settings. Finally, we discuss the extensions of our results to the online setting where agent arrival information is only known at each period. 
    more » « less