skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Review of Germanium-Antimony-Telluride Phase Change Materials for Non-Volatile Memories and Optical Modulators
Chalcogenide phase change materials based on germanium-antimony-tellurides (GST-PCMs) have shown outstanding properties in non-volatile memory (NVM) technologies due to their high write and read speeds, reversible phase transition, high degree of scalability, low power consumption, good data retention, and multi-level storage capability. However, GST-based PCMs have shown recent promise in other domains, such as in spatial light modulation, beam steering, and neuromorphic computing. This paper reviews the progress in GST-based PCMs and methods for improving the performance within the context of new applications that have come to light in recent years.  more » « less
Award ID(s):
1710273
PAR ID:
10088243
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
9
Issue:
3
ISSN:
2076-3417
Page Range / eLocation ID:
530
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We experimentally probe the multilevel response of GeTe, Ge2Sb2Te5 (GST), and 4% tungsten-doped GST (W-GST) phase change materials (PCMs) using two wavelengths of light: 1550 nm, which is useful for telecom-applications, and near-infrared 780 nm, which is a standard wavelength for many experiments in atomic and molecular physics. We find that the materials behave differently with the excitation at the different wavelengths and identify useful applications for each material and wavelength. We discuss thickness variation in the thin films used as well and comment on the interaction of the interface between the material and the substrate with regard to the multilevel behavior. Due to the differences in penetration depths, absorption, and index contrast, different PCMs could be more suitably used depending on the application and wavelength of operation. 
    more » « less
  2. Phase-change materials (PCMs) play a pivotal role in the development of advanced thermal devices due to their reversible phase transitions, which drastically modify their thermal and optical properties. In this study, we present an effective dynamic thermal transistor with an asymmetric design that employs distinct PCMs, vanadium dioxide (VO2), and germanium antimony telluride (GST), on either side of the gate terminal, which is the center of the control unit of the near-field thermal transistor. This asymmetry introduces unique thermal modulation capabilities, taking control of thermal radiation in the near-field regime. VO2 transitions from an insulating to a metallic state, while GST undergoes a reversible switch between amorphous and crystalline phases, each inducing substantial changes in thermal transport properties. By strategically combining these materials, the transistor exhibits enhanced functionality, dynamically switching between states of absorbing and releasing heat by tuning the temperature of gate. This gate terminal not only enables active and efficient thermal management but also provides effective opportunities for manipulating heat flow in radiative thermal circuits. Our findings highlight the potential of such asymmetrically structured thermal transistors in advancing applications across microelectronics, high-speed data processing, and sustainable energy systems, where precise and responsive thermal control is critical for performance and efficiency. 
    more » « less
  3. Abstract Phase-change materials (PCMs) offer a compelling platform for active metaoptics, owing to their large index contrast and fast yet stable phase transition attributes. Despite recent advances in phase-change metasurfaces, a fully integrable solution that combines pronounced tuning measures, i.e., efficiency, dynamic range, speed, and power consumption, is still elusive. Here, we demonstrate an in situ electrically driven tunable metasurface by harnessing the full potential of a PCM alloy, Ge2Sb2Te5(GST), to realize non-volatile, reversible, multilevel, fast, and remarkable optical modulation in the near-infrared spectral range. Such a reprogrammable platform presents a record eleven-fold change in the reflectance (absolute reflectance contrast reaching 80%), unprecedented quasi-continuous spectral tuning over 250 nm, and switching speed that can potentially reach a few kHz. Our scalable heterostructure architecture capitalizes on the integration of a robust resistive microheater decoupled from an optically smart metasurface enabling good modal overlap with an ultrathin layer of the largest index contrast PCM to sustain high scattering efficiency even after several reversible phase transitions. We further experimentally demonstrate an electrically reconfigurable phase-change gradient metasurface capable of steering an incident light beam into different diffraction orders. This work represents a critical advance towards the development of fully integrable dynamic metasurfaces and their potential for beamforming applications. 
    more » « less
  4. To understand the mechanism underlying the fast, reversible, phase transformation, information about the atomic structure and defects structures in phase change materials class is key. PCMs are investigated for many applications. These devices are chalcogenide based and use self heating to quickly switch between amorphous and crystalline phases, generating orders of magnitude differences in the electrical resistivity. The main challenges with PCMs have been the large power required to heat above crystallization or melting (for melt-quench amorphization) temperatures and limited reliability due to factors such as resistance drifts of the metastable phases, void formation and elemental segregation upon cycling. Characterization of devices and their unique switching behavior result in distinct material properties affected by the atomic arrangement in the respective phase. TEM is used to study the atomic structure of the metastable crystalline phase. The aim is to correlate the microstructure with results from electrical characterization, building on R vs T measurements on various thicknesses GST thin films. To monitor phase changes in real-time as a function of temperature, thin films are deposited directly onto Protochips carriers. The Protochips heating holders provides controlled temperature changes while imaging in the TEM. These studies can provide insights into how changes occur in the various phase transformations even though the rate of temperature change is much slower than the PCM device operation. Other critical processes such as void formation, grain evolution and the cause of resistance drift can thereby be related to changes in structure and chemistry. Materials characterization is performed using Tecnai F30 and Titan ETEM microscopes, operating at 300kV. Both the microscopes can accept the same Protochips heating holders. The K2 direct electron detector camera equipped with the ETEM allows high-speed video recording (1600 f/s) of structural changes occurring in these materials upon heating and cooling. In this presentation, we will describe the effect of heating thin films of different thickness and composition, the changes in crystallinity and grain size, and how these changes correlate with changes in the electrical properties of the films. We will emphasize that it is always important to use low-dose and/or beam blanking techniques to distinguish changes induced by the beam from those due to the heating or introduction of an electric current. 
    more » « less
  5. The increasing global population has intensified the demand for energy and food, leading to significant greenhouse gas (GHG) emissions from both sectors. To mitigate these impacts and achieve Sustainable Development Goals (SDGs), passive thermal storage methods, particularly using phase change materials (PCMs), have become crucial for enhancing energy efficiency and reducing GHG emissions across various industries. This paper discusses the state of the art of bio-based phase change materials (bio-PCMs), derived from animal fats and plant oils as sustainable alternatives to traditional paraffin-based PCMs, while addressing the challenges of developing bio-PCMs with suitable phase change properties for practical applications. A comprehensive process is proposed to convert bacon fats to bio-PCMs, which offer advantages such as non-toxicity, availability, cost-effectiveness, and stability, aligning with multiple SDGs. The synthesis process involves hydrolysis to break down fat molecules obtained from the extracted lipid, followed by three additional independent processes to further tune the phase change properties of PCMs. The esterification significantly decreases the phase transition temperatures while slightly improving latent heat; the UV-crosslinking moderately raises both the phase transition temperature and latent heat; the crystallization remarkably increases the both. The future research and guidelines are discussed to develop the large scale manufacturing with cost effectiveness, to optimize synthesis process by multiscale modeling, and to improve thermal conductivity and latent heat capacities at the same time. 
    more » « less