skip to main content


Title: TimeWeaver: Opportunistic One Way Delay Measurement Via NTP
One-way delay (OWD) between end hosts has important implications for Internet applications, protocols, and measurement-based analyses. We describe a new approach for identifying OWDs via passive measurement of Network Time Protocol (NTP) traffic. NTP traffic offers the opportunity to measure OWDs accurately and continuously from hosts throughout the Internet. Based on detailed examination of NTP implementations and in-situ behavior, we develop an analysis tool that we call TimeWeaver, which enables assessment of precision and accuracy of OWD measurements from NTP. We apply TimeWeaver to a ∼1TB corpus of NTP traffic collected from 19 servers located in the US and report on the characteristics of hosts and their associated OWDs, which we classify in a precision/accuracy hierarchy. To demonstrate the utility of these measurements, we apply iterative hard-threshold singular value decomposition to estimate the missing OWDs between arbitrary hosts from the highest tier in the hierarchy. We show that this approach results in highly accurate estimates of missing OWDs, with average error rates on the order of less than 2%.  more » « less
Award ID(s):
1703592
NSF-PAR ID:
10096150
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
30th International Teletraffic Congress (ITC 30)
Page Range / eLocation ID:
185 to 193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the nature and characteristics of Internet events such as route changes and outages can serve as the starting point for improvements in network configurations, management and monitoring practices. However, the scale, diversity, and dynamics of network infrastructure makes event detection and analysis challenging. In this paper, we describe a new approach to Internet event measurement, identification and analysis that provides a broad and detailed perspective without the need for new or dedicated infrastructure or additional network traffic. Our approach is based on analyzing data that is readily available from Network Time Protocol (NTP) servers. NTP is one of the few on-by-default services on clients, thus NTP servers have a broad perspective on Internet behavior. We develop a tool for analyzing NTP traces called Tezzeract, which applies Robust Principal Components Analysis to detect Internet events. We demonstrate Tezzeract’s efficacy by conducting controlled experiments and by applying it to data collected over a period of 3 months from 19 NTP servers. We also compare and contrast Tezzeract’s perspective with reported outages and events identified through active probing. We find that while there is commonality across methods, NTP-based monitoring provides a unique perspective that complements prior methods. 
    more » « less
  2. —Understanding the nature and characteristics of Internet events such as route changes and outages can serve as the starting point for improvements in network configurations, management and monitoring practices. However, the scale, diversity, and dynamics of network infrastructure makes event detection and analysis challenging. In this paper, we describe a new approach to Internet event measurement, identification and analysis that provides a broad and detailed perspective without the need for new or dedicated infrastructure or additional network traffic. Our approach is based on analyzing data that is readily available from Network Time Protocol (NTP) servers. NTP is one of the few on-by-default services on clients, thus NTP servers have a broad perspective on Internet behavior. We develop a tool for analyzing NTP traces called Tezzeract, which applies Robust Principal Components Analysis to detect Internet events. We demonstrate Tezzeract’s efficacy by conducting controlled experiments and by applying it to data collected over a period of 3 months from 19 NTP servers. We also compare and contrast Tezzeract’s perspective with reported outages and events identified through active probing. We find that while there is commonality across methods, NTP-based monitoring provides a unique perspective that complements prior methods. 
    more » « less
  3. Recent advances in cyber-physical systems, artificial intelligence, and cloud computing have driven the wide deployments of Internet-of-things (IoT) in smart homes. As IoT devices often directly interact with the users and environments, this paper studies if and how we could explore the collective insights from multiple heterogeneous IoT devices to infer user activities for home safety monitoring and assisted living. Specifically, we develop a new system, namely IoTMosaic, to first profile diverse user activities with distinct IoT device event sequences, which are extracted from smart home network traffic based on their TCP/IP data packet signatures. Given the challenges of missing and out-of-order IoT device events due to device malfunctions or varying network and system latencies, IoTMosaic further develops simple yet effective approximate matching algorithms to identify user activities from real-world IoT network traffic. Our experimental results on thousands of user activities in the smart home environment over two months show that our proposed algorithms can infer different user activities from IoT network traffic in smart homes with the overall accuracy, precision, and recall of 0.99, 0.99, and 1.00, respectively. 
    more » « less
  4. Learning the human--mobility interaction (HMI) on interactive scenes (e.g., how a vehicle turns at an intersection in response to traffic lights and other oncoming vehicles) can enhance the safety, efficiency, and resilience of smart mobility systems (e.g., autonomous vehicles) and many other ubiquitous computing applications. Towards the ubiquitous and understandable HMI learning, this paper considers both spoken language (e.g., human textual annotations) and unspoken language (e.g., visual and sensor-based behavioral mobility information related to the HMI scenes) in terms of information modalities from the real-world HMI scenarios. We aim to extract the important but possibly implicit HMI concepts (as the named entities) from the textual annotations (provided by human annotators) through a novel human language and sensor data co-learning design.

    To this end, we propose CG-HMI, a novel Cross-modality Graph fusion approach for extracting important Human-Mobility Interaction concepts from co-learning of textual annotations as well as the visual and behavioral sensor data. In order to fuse both unspoken and spoken languages, we have designed a unified representation called the human--mobility interaction graph (HMIG) for each modality related to the HMI scenes, i.e., textual annotations, visual video frames, and behavioral sensor time-series (e.g., from the on-board or smartphone inertial measurement units). The nodes of the HMIG in these modalities correspond to the textual words (tokenized for ease of processing) related to HMI concepts, the detected traffic participant/environment categories, and the vehicle maneuver behavior types determined from the behavioral sensor time-series. To extract the inter- and intra-modality semantic correspondences and interactions in the HMIG, we have designed a novel graph interaction fusion approach with differentiable pooling-based graph attention. The resulting graph embeddings are then processed to identify and retrieve the HMI concepts within the annotations, which can benefit the downstream human-computer interaction and ubiquitous computing applications. We have developed and implemented CG-HMI into a system prototype, and performed extensive studies upon three real-world HMI datasets (two on car driving and the third one on e-scooter riding). We have corroborated the excellent performance (on average 13.11% higher accuracy than the other baselines in terms of precision, recall, and F1 measure) and effectiveness of CG-HMI in recognizing and extracting the important HMI concepts through cross-modality learning. Our CG-HMI studies also provide real-world implications (e.g., road safety and driving behaviors) about the interactions between the drivers and other traffic participants.

     
    more » « less
  5. null (Ed.)
    One of the staples of network defense is blocking traffic to and from a list of "known bad" sites on the Internet. However, few organizations are in a position to produce such a list themselves, so pragmatically this approach depends on the existence of third-party "threat intelligence" providers who specialize in distributing feeds of unwelcome IP addresses. However, the choice to use such a strategy, let alone which data feeds are trusted for this purpose, is rarely made public and thus little is understood about the deployment of these techniques in the wild. To explore this issue, we have designed and implemented a technique to infer proactive traffic blocking on a remote host and, through a series of measurements, to associate that blocking with the use of particular IP blocklists. In a pilot study of 220K US hosts, we find as many as one fourth of the hosts appear to blocklist based on some source of threat intelligence data, and about 2% use one of the 9 particular third-party blocklists that we evaluated. 
    more » « less