skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Retrieval of Salt Marsh Above-Ground Biomass from High-Spatial Resolution Hyperspectral Imagery Using PROSAIL
Salt marsh vegetation density varies considerably on short spatial scales, complicating attempts to evaluate plant characteristics using airborne remote sensing approaches. In this study, we used a mast-mounted hyperspectral imaging system to obtain cm-scale imagery of a salt marsh chronosequence on Hog Island, VA, where the morphology and biomass of the dominant plant species, Spartina alterniflora, varies widely. The high-resolution hyperspectral imagery allowed the detailed delineation of variations in above-ground biomass, which we retrieved from the imagery using the PROSAIL radiative transfer model. The retrieved biomass estimates correlated well with contemporaneously collected in situ biomass ground truth data ( R 2 = 0.73 ). In this study, we also rescaled our hyperspectral imagery and retrieved PROSAIL salt marsh biomass to determine the applicability of the method across spatial scales. Histograms of retrieved biomass changed considerably in characteristic marsh regions as the spatial scale of the imagery was progressively degraded. This rescaling revealed a loss of spatial detail and a shift in the mean retrieved biomass. This shift is indicative of the loss of accuracy that may occur when scaling up through a simple averaging approach that does not account for the detail found in the landscape at the natural scale of variation of the salt marsh system. This illustrated the importance of developing methodologies to appropriately scale results from very fine scale resolution up to the more coarse-scale resolutions commonly obtained in airborne and satellite remote sensing.  more » « less
Award ID(s):
1832221
PAR ID:
10098578
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
11
Issue:
11
ISSN:
2072-4292
Page Range / eLocation ID:
1385
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Change in the coastal zone is accelerating with external forcing by sea-level rise, nutrient loading, drought, and over-harvest, leading to significant stress on the foundation plant species of coastal salt marshes. The rapid evolution of marsh state induced by these drivers makes the ability to detect stressors prior to marsh loss important. However, field work in coastal salt marshes can be challenging due to limited access and their fragile nature. Thus, remote sensing approaches hold promise for rapid and accurate determination of marsh state across multiple spatial scales. In this study, we evaluated the use of remote sensing tools to detect three dominant stressors on Spartina alterniflora. We took advantage of a barrier island salt marsh chronosequence in Virginia, USA, where marshes of different ages and level of stressor exist side by side. We collected hyperspectral imagery of plants along with salinity, sediment redox potential, and foliar nitrogen content in the field. We also conducted a greenhouse study where we manipulated environmental conditions. We found that models developed for stressors based on plant spectral response correlated well with salinity and foliar nitrogen within the greenhouse and field data, but were not transferable from lab to field, likely due to the limited range of conditions explored within the greenhouse experiments and the coincidence of multiple stressors in the field. This study is an important step towards the development of a remote sensing tool for tracking of ecosystem development, marsh health, and future ecosystem services. 
    more » « less
  2. Coastal salt marshes are biologically productive ecosystems that generate and sequester significant quantities of organic matter. Plant biomass varies spatially within a salt marsh and it is tedious and often logistically impractical to quantify biomass from field measurements across an entire landscape. Satellite data are useful for estimating aboveground biomass, however, high-resolution data are needed to resolve the spatial details within a salt marsh. This study used 3-m resolution multispectral data provided by Planet to estimate aboveground biomass within two salt marshes, North Inlet-Winyah Bay (North Inlet) National Estuary Research Reserve, and Plum Island Ecosystems (PIE) Long-Term Ecological Research site. The Akaike information criterion analysis was performed to test the fidelity of several alternative models. A combination of the modified soil vegetation index 2 (MSAVI2) and the visible difference vegetation index (VDVI) gave the best fit to the square root-normalized biomass data collected in the field at North Inlet (Willmott’s index of agreement d = 0.74, RMSE = 223.38 g/m2, AICw = 0.3848). An acceptable model was not found among all models tested for PIE data, possibly because the sample size at PIE was too small, samples were collected over a limited vertical range, in a different season, and from areas with variable canopy architecture. For North Inlet, a model-derived landscape scale biomass map showed differences in biomass density among sites, years, and showed a robust relationship between elevation and biomass. The growth curve established in this study is particularly useful as an input for biogeomorphic models of marsh development. This study showed that, used in an appropriate model with calibration, Planet data are suitable for computing and mapping aboveground biomass at high resolution on a landscape scale, which is needed to better understand spatial and temporal trends in salt marsh primary production. 
    more » « less
  3. Elizabeth Borer (Ed.)
    Understanding spatial and temporal variation in plant traits is needed to accurately predict how communities and ecosystems will respond to global change. The National Ecological Observatory Network’s (NEON’s) Airborne Observation Platform (AOP) provides hyperspectral images and associated data products at numerous field sites at 1 m spatial resolution, potentially allowing high-resolution trait mapping. We tested the accuracy of readily available data products of NEON’s AOP, such as Leaf Area Index (LAI), Total Biomass, Ecosystem Structure (Canopy height model [CHM]), and Canopy Nitrogen, by comparing them to spatially extensive field measurements from a mesic tallgrass prairie. Correlations with AOP data products exhibited generally weak or no relationships with corresponding field measurements. The strongest relationships were between AOP LAI and ground-measured LAI (r = 0.32) and AOP Total Biomass and ground-measured biomass (r = 0.23). We also examined how well the full reflectance spectra (380–2,500 nm), as opposed to derived products, could predict vegetation traits using partial least-squares regression (PLSR) models. Among all the eight traits examined, only Nitrogen had a validation of more than 0.25. For all vegetation traits, validation ranged from 0.08 to 0.29 and the range of the root mean square error of prediction (RMSEP) was 14–64%. Our results suggest that currently available AOP-derived data products should not be used without extensive ground-based validation. Relationships using the full reflectance spectra may be more promising, although careful consideration of field and AOP data mismatches in space and/or time, biases in field-based measurements or AOP algorithms, and model uncertainty are needed. Finally, grassland sites may be especially challenging for airborne spectroscopy because of their high species diversity within a small area, mixed functional types of plant communities, and heterogeneous mosaics of disturbance and resource availability. Remote sensing observations are one of the most promising approaches to understanding ecological patterns across space and time. But the opportunity to engage a diverse community of NEON data users will depend on establishing rigorous links with in-situ field measurements across a diversity of sites. 
    more » « less
  4. Abstract Water movement in coastal wetlands is affected by spatial differences in topography and vegetation characteristics as well as by complex hydrological processes operating at different time scales. Traditionally, numerical models have been used to explore the hydrodynamics of these valuable ecosystems. However, we still do not know how well such models simulate water‐level fluctuations beneath the vegetation canopy since we lack extensive field data to test the model results against observations. This study utilizes remotely sensed images of sub‐canopy water‐level change to understand how marshes drain water during falling tides. We employ rapid repeat interferometric observations from the NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar instrument to analyze the spatial variability in water‐level change within a complex of marshes in Terrebonne Bay, Louisiana. We also used maps of herbaceous aboveground biomass derived from the Airborne Visible/Infrared Imaging Spectrometer‐Next Generation to evaluate vegetation contribution to such variability. This study reveals that the distribution of water‐level change under salt marsh canopies is strongly influenced by the presence of small geomorphic features (<10 m) in the marsh landscape (i.e., levees, tidal channels), whereas vegetation plays a minor role in retaining water on the platform. This new type of high‐resolution remote sensing data offers the opportunity to study the feedback between hydrodynamics, topography and biology throughout wetlands at an unprecedented spatial resolution and test the capability of numerical models to reproduce such patterns. Our results are essential for predicting the vulnerability of these delicate environments to climate change. 
    more » « less
  5. Salt marshes play a crucial role in coastal biogeochemical cycles and provide unique ecosystem services. Salt marsh biomass, which can strongly influence such services, varies over time in response to hydrologic conditions and other environmental drivers. We used gap-filled monthly observations ofSpartina alternifloraaboveground biomass derived from Landsat 5 and Landsat 8 satellite imagery from 1984-2018 to analyze temporal patterns in biomass in comparison to air temperature, precipitation, river discharge, nutrient input, sea level, and drought index for a southeastern US salt marsh. Wavelet analysis and ensemble empirical mode decomposition identified month to multi-year periodicities in both plant biomass and environmental drivers. Wavelet coherence detected cross-correlations between annual biomass cycles and precipitation, temperature, river discharge, nutrient concentrations (NOxand PO43–) and sea level. At longer periods we detected coherence between biomass and all variables except precipitation. Through empirical dynamic modeling we showed that temperature, river discharge, drought, sea level, and river nutrient concentrations were causally connected to salt marsh biomass and exceeded the confounding effect of seasonality. This study demonstrated the insights into biomass dynamics and causal connections that can be gained through the analysis of long-term data. 
    more » « less