skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Decoder: Concise Image Representations from Untrained Non-convolutional Networks
Deep neural networks, in particular convolutional neural networks, have become highly effective tools for compressing images and solving inverse problems including denoising, inpainting, and reconstruction from few and noisy measurements. This success can be attributed in part to their ability to represent and generate natural images well. Contrary to classical tools such as wavelets, image-generating deep neural networks have a large number of parameters---typically a multiple of their output dimension---and need to be trained on large datasets. In this paper, we propose an untrained simple image model, called the deep decoder, which is a deep neural network that can generate natural images from very few weight parameters. The deep decoder has a simple architecture with no convolutions and fewer weight parameters than the output dimensionality. This underparameterization enables the deep decoder to compress images into a concise set of network weights, which we show is on par with wavelet-based thresholding. Further, underparameterization provides a barrier to overfitting, allowing the deep decoder to have state-of-the-art performance for denoising. The deep decoder is simple in the sense that each layer has an identical structure that consists of only one upsampling unit, pixel-wise linear combination of channels, ReLU activation, and channelwise normalization. This simplicity makes the network amenable to theoretical analysis, and it sheds light on the aspects of neural networks that enable them to form effective signal representations.  more » « less
Award ID(s):
1816986
PAR ID:
10100185
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Conference on Learning Representations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Deep neural networks provide state-of-the-art performance for image denoising, where the goal is to recover a near noise-free image from a noisy observation. The underlying principle is that neural networks trained on large data sets have empirically been shown to be able to generate natural images well from a low-dimensional latent representation of the image. Given such a generator network, a noisy image can be denoised by (i) finding the closest image in the range of the generator or by (ii) passing it through an encoder-generator architecture (known as an autoencoder). However, there is little theory to justify this success, let alone to predict the denoising performance as a function of the network parameters. In this paper, we consider the problem of denoising an image from additive Gaussian noise using the two generator-based approaches. In both cases, we assume the image is well described by a deep neural network with ReLU activations functions, mapping a $$k$$-dimensional code to an $$n$$-dimensional image. In the case of the autoencoder, we show that the feedforward network reduces noise energy by a factor of $O(k/n)$. In the case of optimizing over the range of a generative model, we state and analyze a simple gradient algorithm that minimizes a non-convex loss function and provably reduces noise energy by a factor of $O(k/n)$. We also demonstrate in numerical experiments that this denoising performance is, indeed, achieved by generative priors learned from data. 
    more » « less
  2. The "deep image prior" proposed by Ulyanov et al. is an intriguing property of neural nets: a convolutional encoder-decoder network can be used as a prior for natural images. The network architecture implicitly introduces a bias; If we train the model to map white noise to a corrupted image, this bias guides the model to fit the true image before fitting the corrupted regions. This paper explores why the deep image prior helps in denoising natural images. We present a novel method to analyze trajectories generated by the deep image prior optimization and demonstrate: (i) convolution layers of the an encoder-decoder decouple the frequency components of the image, learning each at different rates (ii) the model fits lower frequencies first, making early stopping behave as a low pass filter. The experiments study an extension of Cheng et al which showed that at initialization, the deep image prior is equivalent to a stationary Gaussian process. 
    more » « less
  3. Un-trained convolutional neural networks have emerged as highly successful tools for image recovery and restoration. They are capable of solving standard inverse problems such as denoising and compressive sensing with excellent results by simply fitting a neural network model to measurements from a single image or signal without the need for any additional training data. For some applications, this critically requires additional regularization in the form of early stopping the optimization. For signal recovery from a few measurements, however, un-trained convolutional networks have an intriguing self-regularizing property: Even though the network can perfectly fit any image, the network recovers a natural image from few measurements when trained with gradient descent until convergence. In this paper, we provide numerical evidence for this property and study it theoretically. We show that---without any further regularization---an un-trained convolutional neural network can approximately reconstruct signals and images that are sufficiently structured, from a near minimal number of random measurements. 
    more » « less
  4. Deep learning (DL) has been increasingly explored in low-dose CT image denoising. DL products have also been submitted to the FDA for premarket clearance. While having the potential to improve image quality over the filtered back projection method (FBP) and produce images quickly, generalizability of DL approaches is a major concern because the performance of a DL network can depend highly on the training data. In this work we take a residual encoder-decoder convolutional neural network (REDCNN)-based CT denoising method as an example. We investigate the effect of the scan parameters associated with the training data on the performance of this DL-based CT denoising method and identifies the scan parameters that may significantly impact its performance generalizability. This abstract particularly examines these three parameters: reconstruction kernel, dose level and slice thickness. Our preliminary results indicate that the DL network may not generalize well between FBP reconstruction kernels, but is insensitive to slice thickness for slice-wise denoising. The results also suggest that training with mixed dose levels improves denoising performance. 
    more » « less
  5. Convolutional Neural Networks (CNNs) have emerged as highly successful tools for image generation, recovery, and restoration. A major contributing factor to this success is that convolutional networks impose strong prior assumptions about natural images. A surprising experiment that highlights this architectural bias towards natural images is that one can remove noise and corruptions from a natural image without using any training data, by simply fitting (via gradient descent) a randomly initialized, over-parameterized convolutional generator to the corrupted image. While this over-parameterized network can fit the corrupted image perfectly, surprisingly after a few iterations of gradient descent it generates an almost uncorrupted image. This intriguing phenomenon enables state-of-the-art CNN-based denoising and regularization of other inverse problems. In this paper, we attribute this effect to a particular architectural choice of convolutional networks, namely convolutions with fixed interpolating filters. We then formally characterize the dynamics of fitting a two-layer convolutional generator to a noisy signal and prove that early-stopped gradient descent denoises/regularizes. Our proof relies on showing that convolutional generators fit the structured part of an image significantly faster than the corrupted portion. 
    more » « less