skip to main content


Title: Spindle nodal chain in three-dimensional α′ boron
Topological metals/semimetals (TMs) have emerged as a new frontier in the field of quantum materials. A few two-dimensional (2D) boron sheets have been suggested as Dirac materials, however, to date TMs made of three-dimensional (3D) boron structures have not been found. Herein, by means of systematic first principles computations, we discovered that a rather stable 3D boron allotrope, namely 3D-α′ boron, is a nodal-chain semimetal. In momentum space, six nodal lines and rings contact each other and form a novel spindle nodal chain. This 3D-α′ boron can be formed by stacking 2D wiggle α′ boron sheets, which are also nodal-ring semimetals. In addition, our chemical bond analysis revealed that the topological properties of the 3D and 2D boron structures are related to the π bonds between boron atoms, however, the bonding characteristics are different from those in the 2D and 3D carbon structures.  more » « less
Award ID(s):
1736093
NSF-PAR ID:
10106982
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
20
Issue:
36
ISSN:
1463-9076
Page Range / eLocation ID:
23500 to 23506
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Three-dimensional (3D) topological semimetals represent a new class of topological matters. The study of this family of materials has been at the frontiers of condensed matter physics, and many breakthroughs have been made. Several topological semimetal phases, including Dirac semimetals (DSMs), Weyl semimetals (WSMs), nodal-line semimetals (NLSMs), and triple-point semimetals, have been theoretically predicted and experimentally demonstrated. The low-energy excitation around the Dirac/Weyl nodal points, nodal line, or triply degenerated nodal point can be viewed as emergent relativistic fermions. Experimental studies have shown that relativistic fermions can result in a rich variety of exotic transport properties, e.g., extremely large magnetoresistance, the chiral anomaly, and the intrinsic anomalous Hall effect. In this review, we first briefly introduce band structural characteristics of each topological semimetal phase, then review the current studies on quantum oscillations and exotic transport properties of various topological semimetals, and finally provide a perspective of this area. 
    more » « less
  2. Abstract

    Symmetry-protected topological crystalline insulators (TCIs) have primarily been characterized by their gapless boundary states. However, in time-reversal- ($${{{{{{{\mathcal{T}}}}}}}}$$T-) invariant (helical) 3D TCIs—termed higher-order TCIs (HOTIs)—the boundary signatures can manifest as a sample-dependent network of 1D hinge states. We here introduce nested spin-resolved Wilson loops and layer constructions as tools to characterize the intrinsic bulk topological properties of spinful 3D insulators. We discover that helical HOTIs realize one of three spin-resolved phases with distinct responses that are quantitatively robust to large deformations of the bulk spin-orbital texture: 3D quantum spin Hall insulators (QSHIs), “spin-Weyl” semimetals, and$${{{{{{{\mathcal{T}}}}}}}}$$T-doubled axion insulator (T-DAXI) states with nontrivial partial axion angles indicative of a 3D spin-magnetoelectric bulk response and half-quantized 2D TI surface states originating from a partial parity anomaly. Using ab-initio calculations, we demonstrate thatβ-MoTe2realizes a spin-Weyl state and thatα-BiBr hosts both 3D QSHI and T-DAXI regimes.

     
    more » « less
  3. Among the diversity of new materials, two-dimensional crystal structures have been attracting significant attention from the broad scientific community due to their promising applications in nanoscience. In this study we predict a novel two-dimensional ferromagnetic boron material, which has been exhaustively studied with DFT methods. The relaxed structure of the 2D-B 6 monolayer consists of slightly flattened octahedral units connected with 2c-2e B–B σ-bonds. The calculated phonon spectrum and ab initio molecular dynamics simulations reveal the thermal and dynamical stability of the designed material. The calculation of the mechanical properties indicate a relatively high Young's modulus of 149 N m −1 . Moreover, the electronic structure indicates the metallic nature of the 2D-B 6 sheets, whereas the magnetic moment per unit cell is found to be 1.59 μ B . The magnetism in the 2D-B 6 monolayer can be described by the presence of two unpaired delocalized bonding elements inside every distorted octahedron. Interestingly, the nature of the magnetism does not lie in the presence of half-occupied atomic orbitals, as was shown for previously studied magnetic materials based on boron. We hope that our predictions will provide promising new ideas for the further fabrication of boron-based two-dimensional magnetic materials. 
    more » « less
  4. null (Ed.)
    The successful synthesis of two-dimensional (2D) boron sheets typically relies on the utilization of a silver surface, which acts as a gated substrate compensating for the electron-deficiency of boron. However, how the structures of one-dimensional (1D) boron are affected by the gating effect remains unclear. By means of an unbiased global minimum structure search and density functional theory (DFT) computations, we discovered the coexistence of 2D boron sheets and 1D ribbons triggered by electrostatic gating. Specifically, at a low excess charge density level (<0.1 e per atom), 2D boron sheets dominate the low energy configurations. As the charge density increases (>0.3 e per atom), more 1D boron ribbons emerge, while the number of 2D layers is reduced. Additionally, a number of low-lying 1D boron ribbons were discovered, among which a flat borophene-like ribbon (FBR) was predicted to be stable and possess high mechanical strength. Moreover, the electride Ca 2 N was identified as an ideal substrate for the fabrication of the FBR because of its ability to supply a strong electrostatic field. This work bridges the gap between 2D and 1D boron structures, reveals the polymorphism of 1D boron ribbons under the electrostatic gating effect, and in general provides broad implications for future synthesis and applications of low-dimensional boron materials. 
    more » « less
  5. Abstract

    Shape morphing materials have been extensively studied to control the formation of sophisticated three-dimensional (3D) structures and devices for a broad range of applications. Various methods, including the buckling of pre-strained bilayer composites, stimuli-responsive shape-shifting of shape memory polymers, and hydrogels, have been previously employed to transform 2D sheets to 3D structures and devices. However, the residual stress locked in these shape-shifting structures will drive them to gradually revert to their original layouts upon the removal of external stimuli or constrains. Here, we report a multistimuli-responsive vitrimer (m-vitrimer) bearing thermal- and photo-reversible disulfide bonds as shape programmable and healable materials for functional 3D devices. The mechanical properties and thermomechanical properties of vitrimer were tuned by altering the disulfide content and catalyst loading. Heat and light exposure induces effective stress relaxation and network rearrangement, enabling material shape programming and healing. We demonstrate that printed flexible smart electronics are fabricated using the m-vitrimer as a matrix and printed conductive silver nanoparticles as conductive wire. The printed electronics possess good electro-mechanical properties, strong interfacial bonding, and thermal- and photo-responsive shape programming. Moreover, the m-vitrimer can be healed upon damage by heat and light, which partially restores silver conductivity and protect the electronics from further damage. The converging of multi-stimuli-responsive polymers and printed electronics for functional 3D devices have the potential of finding broad applications in smart and morphing electronics, biomedical devices, and 4D printing.

     
    more » « less