skip to main content


Title: Timing between Cortical Slow Oscillations and Heart Rate Bursts during Sleep Predicts Temporal Processing Speed, but Not Offline Consolidation
Central and autonomic nervous system activities are coupled during sleep. Cortical slow oscillations (SOs; <1 Hz) coincide with brief bursts in heart rate (HR), but the functional consequence of this coupling in cognition remains elusive. We measured SO–HR temporal coupling (i.e., the peak-to-peak interval between downstate of SO event and HR burst) during a daytime nap and asked whether this SO–HR timing measure was associated with temporal processing speed and learning on a texture discrimination task by testing participants before and after a nap. The coherence of SO–HR events during sleep strongly correlated with an individual's temporal processing speed in the morning and evening test sessions, but not with their change in performance after the nap (i.e., consolidation). We confirmed this result in two additional experimental visits and also discovered that this association was visit-specific, indicating a state (not trait) marker. Thus, we introduce a novel physiological index that may be a useful marker of state-dependent processing speed of an individual.  more » « less
Award ID(s):
1724405
NSF-PAR ID:
10111098
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Cognitive Neuroscience
ISSN:
0898-929X
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Temporal interactions between non-rapid eye movement (NREM) sleep rhythms especially the coupling between cortical slow oscillations (SO, ∼1 Hz) and thalamic spindles (∼12 Hz) have been proposed to contribute to multi-regional interactions crucial for memory processing and cognitive ability. We investigated relationships between NREM sleep depth, sleep spindles and SO-spindle coupling regarding memory ability and memory consolidation in healthy humans. Findings underscore the functional relevance of spindle dynamics (slow versus fast), SO-phase, and most importantly NREM sleep depth for cognitive processing. Cross-frequency coupling analyses demonstrated stronger precise temporal coordination of slow spindles to SO down-state in N2 for subjects with higher general memory ability. A GLM model underscored this relationship, and furthermore that fast spindle properties were predictive of overnight memory consolidation. Our results suggest cognitive fingerprints dependent on conjoint fine-tuned SO-spindle temporal coupling, spindle properties, and brain sleep state. 
    more » « less
  2. Abstract

    Although we experience thousands of distinct events on a daily basis, relatively few are committed to memory. The human capacity to intentionally control which events will be remembered has been demonstrated using learning procedures with instructions to purposely avoid committing specific items to memory. In this study, we used a variant of the item-based directed-forgetting procedure and instructed participants to memorize the location of some images but not others on a grid. These instructions were conveyed using a set of auditory cues. Then, during an afternoon nap, we unobtrusively presented a cue that was used to instruct participant to avoid committing the locations of some images to memory. After sleep, memory was worse for to-be-forgotten image locations associated with the presented sound relative to those associated with a sound that was not presented during sleep. We conclude that memory processing during sleep can serve not only to secure memory storage but also to weaken it. Given that intentional suppression may be used to weaken unpleasant memories, such sleep-based strategies may help accelerate treatments for memory-related disorders such as post-traumatic stress disorder.

     
    more » « less
  3. In early childhood, consolidation of sleep from a biphasic to a monophasic sleep-wake pattern, that is, the transition from sleeping during an afternoon nap and at night to sleeping only during the night, represents a major developmental milestone. Reduced napping behavior is associated with an advance in the timing of the circadian system; however, it is unknown if this advance represents a standard response of the circadian clock to altered patterns of light exposure or if it additionally reflects features of the developing circadian system. Using a mathematical model of the human circadian pacemaker, we investigated the impact of napping and non-napping patterns of light exposure on entrained circadian phases. Simulated light schedules were based on published data from 20 children (34.2 ± 2.0 months) with habitual napping or non-napping sleep patterns (15 nappers). We found the model predicted different circadian phases for napping and non-napping light patterns: both the decrease in afternoon light during the nap and the increase in evening light associated with napping toddlers’ later bedtimes contributed to the observed circadian phase difference produced between napping and non-napping light schedules. We systematically quantified the effects on phase shifting of nap duration, timing, and light intensity, finding larger phase delays occurred for longer and earlier naps. In addition, we simulated phase response curves to a 1-h light pulse and 1-h dark pulse to predict phase and intensity dependence of these changes in light exposure. We found the light pulse produced larger shifts compared with the dark pulse, and we analyzed the model dynamics to identify the features contributing to this asymmetry. These findings suggest that napping status affects circadian timing due to altered patterns of light exposure, with the dynamics of the circadian clock and light processing mediating the effects of the dark pulse associated with a daytime nap.

     
    more » « less
  4. Abstract

    Napping benefits long-term memory formation and is a tool many individuals use to improve daytime functioning. Despite its potential advantages, approximately 47% of people in the United States eschew napping. The goal of this study was to determine whether people who endorse napping at least once a week (nap+) show differences in nap outcomes, including nap-dependent memory consolidation, compared with people who rarely or never nap (nap−). Additionally, we tested whether four weeks of nap practice or restriction would change sleep and performance profiles. Using a perceptual learning task, we found that napping enhanced performance to a greater degree in nap+ compared with nap− individuals (at baseline). Additionally, performance change was associated with different electrophysiological sleep features in each group. In the nap+ group, spindle density was positively correlated with performance improvement, an effect specific to spindles in the hemisphere contralateral to the trained visual field. In the nap− group, slow oscillatory power (0.5–1 Hz) was correlated with performance. Surprisingly, no changes to performance or brain activity during sleep emerged after four weeks of nap practice or restriction. These results suggest that individual differences may impact the potential benefits of napping on performance and the ability to become a better napper.

     
    more » « less
  5. Abstract

    Previous research has established important developmental changes in sleep and memory during early childhood. These changes have been linked separately to brain development, yet few studies have explored their interrelations during this developmental period. The goal of this report was to explore these associations in 200 (100 female) typically developing 4- to 8-year-old children. We examined whether habitual sleep patterns (24-h sleep duration, nap status) were related to children’s performance on a source memory task and hippocampal subfield volumes. Results revealed that, across all participants, after controlling for age, habitual sleep duration was positively related to source memory performance. In addition, in younger (4–6 years, n = 67), but not older (6–8 years, n = 70) children, habitual sleep duration was related to hippocampal head subfield volume (CA2-4/DG). Moreover, within younger children, volume of hippocampal subfields varied as a function of nap status; children who were still napping (n = 28) had larger CA1 volumes in the body compared to children who had transitioned out of napping (n = 39). Together, these findings are consistent with the hypothesis that habitually napping children may have more immature cognitive networks, as indexed by hippocampal integrity. Furthermore, these results shed additional light on why sleep is important during early childhood, a period of substantial brain development.

     
    more » « less