skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Good Line Cutting: Towards Accurate Pose Tracking of Line-Assisted VO/VSLAM
This paper tackles a problem in line-assisted VO/VSLAM: accurately solving the least squares pose optimization with unreliable 3D line input. The solution we present is good line cutting, which extracts the most-informative sub-segment from each 3D line for use within the pose optimization formulation. By studying the impact of line cutting towards the information gain of pose estimation in line-based least squares problem, we demonstrate the applicability of improving pose estimation accuracy with good line cutting. To that end, we describe an efficient algorithm that approximately approaches the joint optimization problem of good line cutting. The proposed algorithm is integrated into a state-of-the-art line-assisted VSLAM system. When evaluated in two target scenarios of line-assisted VO/VSLAM, low-texture and motion blur, the accuracy of pose tracking is improved, while the robustness is preserved.  more » « less
Award ID(s):
1816138 1544857
PAR ID:
10111562
Author(s) / Creator(s):
;
Date Published:
Journal Name:
European Conference on Computer Vision
Page Range / eLocation ID:
527-543
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper aims to select features that contribute most to the pose estimation in VO/VSLAM. Unlike existing feature selection works that are focused on efficiency only, our method significantly improves the accuracy of pose tracking, while introducing little overhead. By studying the impact of feature selection towards least squares pose optimization, we demonstrate the applicability of improving accuracy via good feature selection. To that end, we introduce the Max-logDet metric to guide the feature selection, which is connected to the conditioning of least squares pose optimization problem. We then describe an efficient algorithm for approximately solving the NP-hard Max-logDet problem. Integrating MaxlogDet feature selection into a state-of-the-art visual SLAM system leads to accuracy improvements with low overhead, as demonstrated via evaluation on a public benchmark. 
    more » « less
  2. A local map module is often implemented in modern VO/VSLAM systems to improve data association and pose estimation. Conventionally, the local map contents are determined by co-visibility. While co-visibility is cheap to establish, it utilizes the relatively-weak temporal prior (i.e. seen before, likely to be seen now), therefore admitting more features into the local map than necessary. This paper describes an enhancement to co-visibility local map building by incorporating a strong appearance prior, which leads to a more compact local map and latency reduction in downstream data association. The appearance prior collected from the current image influences the local map contents: only the map features visually similar to the current measurements are potentially useful for data association. To that end, mapped features are indexed and queried with Multi-index Hashing (MIH). An online hash table selection algorithm is developed to further reduce the query overhead of MIH and the local map size. The proposed appearance-based local map building method is integrated into a state-of-the-art VO/VSLAM system. When evaluated on two public benchmarks, the size of the local map, as well as the latency of real-time pose tracking in VO/VSLAM are significantly reduced. Meanwhile, the VO/VSLAM mean performance is preserved or improves. 
    more » « less
  3. Accurate knowledge of transmission line parameters is essential for a variety of power system monitoring, protection, and control applications. The use of phasor measurement unit (PMU) data for transmission line parameter estimation (TLPE) is well-documented. However, existing literature on PMU-based TLPE implicitly assumes the measurement noise to be Gaussian. Recently, it has been shown that the noise in PMU measurements (especially in the current phasors) is better represented by Gaussian mixture models (GMMs), i.e., the noises are non-Gaussian. We present a novel approach for TLPE that can handle non-Gaussian noise in the PMU measurements. The measurement noise is expressed as a GMM, whose components are identified using the expectation-maximization (EM) algorithm. Subsequently, noise and parameter estimation is carried out by solving a maximum likelihood estimation problem iteratively until convergence. The superior performance of the proposed approach over traditional approaches such as least squares and total least squares as well as the more recently proposed minimum total error entropy approach is demonstrated by performing simulations using the IEEE 118-bus system as well as proprietary PMU data obtained from a U.S. power utility. 
    more » « less
  4. Accurate knowledge of transmission line parameters is essential for a variety of power system monitoring, protection, and control applications. The use of phasor measurement unit (PMU) data for transmission line parameter estimation (TLPE) is well-documented. However, existing literature on PMU-based TLPE implicitly assumes the measurement noise to be Gaussian. Recently, it has been shown that the noise in PMU measurements (especially in the current phasors) is better represented by Gaussian mixture models (GMMs), i.e., the noises are non-Gaussian. We present a novel approach for TLPE that can handle non-Gaussian noise in the PMU measurements. The measurement noise is expressed as a GMM, whose components are identified using the expectation-maximization (EM) algorithm. Subsequently, noise and parameter estimation is carried out by solving a maximum likelihood estimation problem iteratively until convergence. The superior performance of the proposed approach over traditional approaches such as least squares and total least squares as well as the more recently proposed minimum total error entropy approach is demonstrated by performing simulations using the IEEE 118-bus system as well as proprietary PMU data obtained from a U.S. power utility. 
    more » « less
  5. Reconstruction of 3D neural fields from posed images has emerged as a promising method for self-supervised representation learning. The key challenge preventing the deployment of these 3D scene learners on large-scale video data is their dependence on precise camera poses from structure-from-motion, which is prohibitively expensive to run at scale. We propose a method that jointly reconstructs camera poses and 3D neural scene representations online and in a single forward pass. We estimate poses by first lifting frame-to-frame optical flow to 3D scene flow via differentiable rendering, preserving locality and shift-equivariance of the image processing backbone. SE(3) camera pose estimation is then performed via a weighted least-squares fit to the scene flow field. This formulation enables us to jointly supervise pose estimation and a generalizable neural scene representation via re-rendering the input video, and thus, train end-to-end and fully self-supervised on real-world video datasets. We demonstrate that our method performs robustly on diverse, real-world video, notably on sequences traditionally challenging to optimization-based pose estimation techniques. 
    more » « less