We present efficient dynamic data structures for maintaining the union of unit discs and the lower envelope of pseudo-lines in the plane. More precisely, we present three main results in this paper: (i) We present a linear-size data structure to maintain the union of a set of unit discs under insertions. It can insert a disc and update the union in O (( k +1)log 2 n ) time, where n is the current number of unit discs and k is the combinatorial complexity of the structural change in the union due to the insertion of the new disc. It can also compute, within the same time bound, the area of the union after the insertion of each disc. (ii) We propose a linear-size data structure for maintaining the lower envelope of a set of x -monotone pseudo-lines. It can handle insertion/deletion of a pseudo-line in O (log 2 n ) time; for a query point x 0 ∈ ℝ, it can report, in O (log n ) time, the point on the lower envelope with x -coordinate x 0 ; and for a query point q ∈ ℝ 2 , it can return all k pseudo-lines lying below q in time O (log n + k log 2 n ). (iii) We present a linear-size data structure for storing a set of circular arcs of unit radius (not necessarily on the boundary of the union of the corresponding discs), so that for a query unit disc D , all input arcs intersecting D can be reported in O ( n 1/2+ɛ + k ) time, where k is the output size and ɛ > 0 is an arbitrarily small constant. A unit-circle arc can be inserted or deleted in O (log 2 n ) time.
more »
« less
Affine actions with Hitchin linear part
Properly discontinuous actions of a surface group by affine automorphisms of ℝ^d were shown to exist by Danciger-Gueritaud-Kassel. We show, however, that if the linear part of an affine surface group action is in the Hitchin component, then the action fails to be properly discontinuous. The key case is that of linear part in 𝖲𝖮(n,n−1), so that the affine action is by isometries of a flat pseudo-Riemannian metric on ℝ^d of signature (n,n−1). Here, the translational part determines a deformation of the linear part into 𝖯𝖲𝖮(n,n)-Hitchin representations and the crucial step is to show that such representations are not Anosov in 𝖯𝖲𝖫(2n,ℝ) with respect to the stabilizer of an n-plane. We also prove a negative curvature analogue of the main result, that the action of a surface group on the pseudo-Riemannian hyperbolic space of signature (n,n−1) by a 𝖯𝖲𝖮(n,n)-Hitchin representation fails to be properly discontinuous.
more »
« less
- Award ID(s):
- 1812216
- PAR ID:
- 10111998
- Date Published:
- Journal Name:
- Geometric and Functional Analysis
- ISSN:
- 1016-443X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aichholzer, Oswin; Wang, Haitao (Ed.)We present new results on 2- and 3-hop spanners for geometric intersection graphs. These include improved upper and lower bounds for 2- and 3-hop spanners for many geometric intersection graphs in ℝ^d. For example, we show that the intersection graph of n balls in ℝ^d admits a 2-hop spanner of size O^*(n^{3/2 - 1/(2(2⌊d/2⌋ + 1))}) and the intersection graph of n fat axis-parallel boxes in ℝ^d admits a 2-hop spanner of size O(n log^{d+1}n). Furthermore, we show that the intersection graph of general semi-algebraic objects in ℝ^d admits a 3-hop spanner of size O^*(n^{3/2 - 1/(2(2D-1))}), where D is a parameter associated with the description complexity of the objects. For such families (or more specifically, for tetrahedra in ℝ³), we provide a lower bound of Ω(n^{4/3}). For 3-hop and axis-parallel boxes in ℝ^d, we provide the upper bound O(n log ^{d-1}n) and lower bound Ω(n ({log n}/{log log n})^{d-2}).more » « less
-
Grandoni, Fabrizio; Herman, Grzegorz; Sanders, Peter (Ed.)Reliable spanners can withstand huge failures, even when a linear number of vertices are deleted from the network. In case of failures, some of the remaining vertices of a reliable spanner may no longer admit the spanner property, but this collateral damage is bounded by a fraction of the size of the attack. It is known that Ω(nlog n) edges are needed to achieve this strong property, where n is the number of vertices in the network, even in one dimension. Constructions of reliable geometric (1+ε)-spanners, for n points in ℝ^d, are known, where the resulting graph has 𝒪(n log n log log⁶n) edges. Here, we show randomized constructions of smaller size spanners that have the desired reliability property in expectation or with good probability. The new construction is simple, and potentially practical - replacing a hierarchical usage of expanders (which renders the previous constructions impractical) by a simple skip list like construction. This results in a 1-spanner, on the line, that has linear number of edges. Using this, we present a construction of a reliable spanner in ℝ^d with 𝒪(n log log²n log log log n) edges.more » « less
-
null (Ed.)Abstract We investigate the Hölder geometry of curves generated by iterated function systems (IFS) in a complete metric space. A theorem of Hata from 1985 asserts that every connected attractor of an IFS is locally connected and path-connected. We give a quantitative strengthening of Hata’s theorem. First we prove that every connected attractor of an IFS is (1/ s )-Hölder path-connected, where s is the similarity dimension of the IFS. Then we show that every connected attractor of an IFS is parameterized by a (1/ α)-Hölder curve for all α > s . At the endpoint, α = s , a theorem of Remes from 1998 already established that connected self-similar sets in Euclidean space that satisfy the open set condition are parameterized by (1/ s )-Hölder curves. In a secondary result, we show how to promote Remes’ theorem to self-similar sets in complete metric spaces, but in this setting require the attractor to have positive s -dimensional Hausdorff measure in lieu of the open set condition. To close the paper, we determine sharp Hölder exponents of parameterizations in the class of connected self-affine Bedford-McMullen carpets and build parameterizations of self-affine sponges. An interesting phenomenon emerges in the self-affine setting. While the optimal parameter s for a self-similar curve in ℝ n is always at most the ambient dimension n , the optimal parameter s for a self-affine curve in ℝ n may be strictly greater than n .more » « less
-
We studied the least-squares ReLU neural network (LSNN) method for solving a linear advection-reaction equation with discontinuous solution in [Z. Cai et al., J. Comput. Phys., 443 (2021), 110514]. The method is based on a least-squares formulation and uses a new class of approximating functions: ReLU neural network (NN) functions. A critical and additional component of the LSNN method, differing from other NN-based methods, is the introduction of a properly designed and physics preserved discrete differential operator. In this paper, we study the LSNN method for problems with discontinuity interfaces. First, we show that ReLU NN functions with depth \(\lceil \log\_2(d+1)\rceil+1\) can approximate any \(d\)-dimensional step function on a discontinuity interface generated by a vector field as streamlines with any prescribed accuracy. By decomposing the solution into continuous and discontinuous parts, we prove theoretically that the discretization error of the LSNN method using ReLU NN functions with depth \(\lceil \log\_2(d+1)\rceil+1\) is mainly determined by the continuous part of the solution provided that the solution jump is constant. Numerical results for both two- and three-dimensional test problems with various discontinuity interfaces show that the LSNN method with enough layers is accurate and does not exhibit the common Gibbs phenomena along discontinuity interfaces.more » « less
An official website of the United States government

