skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chemical heterogeneity in interfacial layers of polymer nanocomposites
It is well-known that particle–polymer interactions strongly control the adsorption and conformations of adsorbed chains. Interfacial layers around nanoparticles consisting of adsorbed and free matrix chains have been extensively studied to reveal their rheological contribution to the behavior of nanocomposites. This work focuses on how chemical heterogeneity of the interfacial layers around the particles governs the microscopic mechanical properties of polymer nanocomposites. Low glass-transition temperature composites consisting of poly(vinyl acetate) coated silica nanoparticles in poly(ethylene oxide) and poly(methyl acrylate) matrices, and of poly(methyl methacrylate) silica nanoparticles in a poly(methyl acrylate) matrix are examined using rheology and X-ray photon correlation spectroscopy. We demonstrate that miscibility between the adsorbed and matrix chains in the interfacial layers led to the observed unusual reinforcement. We suggest that packing of chains in the interfacial regions may also contribute to the reinforcement in the polymer nanocomposites. These features may be used in designing mechanically adaptive composites operating at varying temperature.  more » « less
Award ID(s):
1825250
PAR ID:
10112221
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
14
Issue:
23
ISSN:
1744-683X
Page Range / eLocation ID:
4784 to 4791
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The thermomechanical behavior of polymer nanocomposites is mostly governed by interfacial properties which rely on particle–polymer interactions, particle loading, and dispersion state. We recently showed that poly(methyl methacrylate) (PMMA) adsorbed nanoparticles in poly(ethylene oxide) (PEO) matrices displayed an unusual thermal stiffening response. The molecular origin of this unique stiffening behavior resulted from the enhanced PEO mobility within glassy PMMA chains adsorbed on nanoparticles. In addition, dynamic asymmetry and chemical heterogeneities existing in the interfacial layers around particles were shown to improve the reinforcement of composites as a result of good interchain mixing. Here, the role of chain rigidity in this interfacially controlled reinforcement in PEO composites is investigated. We show that particles adsorbed with less rigid polymers improve the mechanical properties of composites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 9–14 
    more » « less
  2. Abstract Filler aggregation in polymer matrix nanocomposites leads to inhomogeneity in particle distribution and deterioration of mechanical properties. The use of polymer‐grafted nanoparticles (PGNPs) with polymers directly attached to the particle surfaces precludes aggregation of the filler. However, solids composed of PGNPs are mechanically weak unless the grafted chains are long enough to form entanglements between particles, and requiring long grafts limits the achievable filler density of the nanocomposite. In this work, long, entangled grafts are replaced with short reactive polymers that form covalent crosslinks between particles. Crosslinkable PGNPs, referred to as XNPs, can be easily processed from solution and subsequently cured to yield a highly filled yet mechanically robust composite. In this specific instance, silica nanoparticles are grafted with poly(glycidyl methacrylate), cast into films, and crosslinked with multifunctional amines at elevated temperatures. Indentation and scratch experiments show significant enhancement of hardness, modulus, and scratch resistance compared to non‐crosslinked PGNPs and to crosslinked polymer films without nanoparticle reinforcement. Loadings of up to 57 wt% are achieved while yielding uniform films that deform locally in a predominantly elastic manner. XNPs therefore potentially allow for the formulation of robust nanocomposites with a high level of functionality imparted by the selected filler particles. 
    more » « less
  3. A coarse-grained model has been built to study the effect of the interfacial interaction between spherical filler particles and polymer on the mechanical properties of polymer nanocomposites. The polymer is modeled as bead-spring chains, and nano-fillers grafted with coupling agent are embedded into the polymer matrix. The potential parameters for polymer and filler are optimized to maximally match styrene-butadiene rubber reinforced with silica particles. The results indicated that, to play a noticeable role in mechanical reinforcement, a critical value exists for the grafting density of the filler–polymer coupling agent. After reaching the critical value, the increase of grafting density can substantially enhance mechanical properties. It is also observed that the increase of grafting density does not necessarily increase the amount of independent polymer chains connected to fillers. Instead, a significant amount of increased grafting sites serve to further strengthen already connected polymer and filler, indicating that mechanical reinforcement can occur through the locally strengthened confinement at the filler–polymer interface. These understandings based on microstructure visualization shed light on the development of new filler polymer interfaces with better mechanical properties. 
    more » « less
  4. This work is focused on the mass transport of methanol and the methanol-assisted crack healing in poly(methyl methacrylate) (PMMA)–graphene composites at different temperatures. The effect of the fraction of graphene on the mass transport of methanol and the methanol-assisted crack healing is also studied. The experimental results reveal that adding graphene to the PMMA matrix increases the resistance to the migration/diffusion of methanol and polymer chains in the PMMA matrix, and the absorption of methanol follows anomalous diffusion. The activation energies for the case I transport and case II transport in the PMMA–graphene composites are relatively independent of the fraction of graphene, and are larger than the corresponding ones in pure PMMA. Increasing the healing time and healing temperature allows for more polymer chains to migrate/diffuse across fractured surfaces, leading to the increase in the fracture strength of the crack-healed PMMA–graphene composites. 
    more » « less
  5. Chain adsorption to nanofiller interfaces creating bound layers has become central to understanding property changes in polymer nanocomposites. We determine the impact different kinds of adsorbed layers can have on the local glass transition temperature Tg of polymer matrices in a model film system using a localized fluorescence method. This work compares the adsorption and desorption of adsorbed layers grown in solution with the solution washing characteristics of adsorbed layers formed in the melt, leveraging knowledge about polymer adsorption in solution to infer the structure of adsorbed layers formed in the melt. In the limit of zero concentration after a long time in solution, we find that both kinds of adsorbed layers reach the same limiting adsorbed amount h∞(c → 0) ≈ 1 nm, appearing to evolve to the same thermodynamic equilibrium state of a near monolayer of surface coverage. We propose that melt annealing leads to a coarsening of polymer segment–surface contacts, increasing the length of trains and shrinking loops and tails, slowing the subsequent kinetics of these adsorbed chains in solution. Considering how the pyrene-labeled chains intermix with the adsorbed layer enables us to discriminate between the impact of tails, loops, and trains as threading of loops takes longer. We find that large fluffy loops, tails, and trains have little to no impact on the local Tg. A large 30 K increase in local Tg is observed for 30-min solvent washed well-annealed films at long intermixing times that we attribute to the threading of small tight loops. 
    more » « less