skip to main content


Title: Adversarial Deep Averaging Networks for Cross-Lingual Sentiment Classification
In recent years great success has been achieved in sentiment classification for English, thanks in part to the availability of copious annotated resources. Unfortunately, most languages do not enjoy such an abundance of labeled data. To tackle the sentiment classification problem in low-resource languages without adequate annotated data, we propose an Adversarial Deep Averaging Network (ADAN) to transfer the knowledge learned from labeled data on a resource-rich source language to low-resource languages where only unlabeled data exist. ADAN has two discriminative branches: a sentiment classifier and an adversarial language discriminator. Both branches take input from a shared feature extractor to learn hidden representations that are simultaneously indicative for the classification task and invariant across languages. Experiments on Chinese and Arabic sentiment classification demonstrate that ADAN significantly outperforms state-of-the-art systems.  more » « less
Award ID(s):
1741441
NSF-PAR ID:
10113365
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Transactions of the Association for Computational Linguistics
Volume:
6
ISSN:
2307-387X
Page Range / eLocation ID:
557-570
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modern NLP applications have enjoyed a great boost utilizing neural networks models. Such deep neural models, however, are not applicable to most human languages due to the lack of annotated training data for various NLP tasks. Cross-lingual transfer learning (CLTL) is a viable method for building NLP models for a low-resource target language by leveraging labeled data from other (source) languages. In this work, we focus on the multilingual transfer setting where training data in multiple source languages is leveraged to further boost target language performance. Unlike most existing methods that rely only on language-invariant features for CLTL, our approach coherently utilizes both language invariant and language-specific features at instance level. Our model leverages adversarial networks to learn language-invariant features, and mixture-of-experts models to dynamically exploit the similarity between the target language and each individual source language1. This enables our model to learn effectively what to share between various languages in the multilingual setup. Moreover, when coupled with unsupervised multilingual embeddings, our model can operate in a zero-resource setting where neither target language training data nor cross-lingual resources are available. Our model achieves significant performance gains over prior art, as shown in an extensive set of experiments over multiple text classification and sequence tagging. 
    more » « less
  2. Sentiment Analysis is a popular text classification task in natural language processing. It involves developing algorithms or machine learning models to determine the sentiment or opinion expressed in a piece of text. The results of this task can be used by business owners and product developers to understand their consumers’ perceptions of their products. Asides from customer feedback and product/service analysis, this task can be useful for social media monitoring (Martin et al., 2021). One of the popular applications of sentiment analysis is for classifying and detecting the positive and negative sentiments on movie reviews. Movie reviews enable movie producers to monitor the performances of their movies (Abhishek et al., 2020) and enhance the decision of movie viewers to know whether a movie is good enough and worth investing time to watch (Lakshmi Devi et al., 2020). However, the task has been under-explored for African languages compared to their western counterparts, ”high resource languages”, that are privileged to have received enormous attention due to the large amount of available textual data. African languages fall under the category of the low resource languages which are on the disadvantaged end because of the limited availability of data that gives them a poor representation (Nasim & Ghani, 2020). Recently, sentiment analysis has received attention on African languages in the Twitter domain for Nigerian (Muhammad et al., 2022) and Amharic (Yimam et al., 2020) languages. However, there is no available corpus in the movie domain. We decided to tackle the problem of unavailability of Yoru`ba´ data for movie sentiment analysis by creating the first Yoru`ba´ sentiment corpus for Nollywood movie reviews. Also, we develop sentiment classification models using state-of-the-art pre-trained language models like mBERT (Devlin et al., 2019) and AfriBERTa (Ogueji et al., 2021). 
    more » « less
  3. Sentiment classification typically relies on a large amount of labeled data. In practice, the availability of labels is highly imbalanced among different languages, e.g., more English texts are labeled than texts in any other languages, which creates a considerable inequality in the quality of related information services received by users speaking different languages. To tackle this problem, cross-lingual sentiment classification approaches aim to transfer knowledge learned from one language that has abundant labeled examples (i.e., the source language, usually English) to another language with fewer labels (i.e., the target language). The source and the target languages are usually bridged through off-the-shelf machine translation tools. Through such a channel, cross-language sentiment patterns can be successfully learned from English and transferred into the target languages. This approach, however, often fails to capture sentiment knowledge specific to the target language, and thus compromises the accuracy of the downstream classification task. In this paper, we employ emojis, which are widely available in many languages, as a new channel to learn both the cross-language and the language-specific sentiment patterns. We propose a novel representation learning method that uses emoji prediction as an instrument to learn respective sentiment-aware representations for each language. The learned representations are then integrated to facilitate cross-lingual sentiment classification. The proposed method demonstrates state-of-the-art performance on benchmark datasets, which is sustained even when sentiment labels are scarce. 
    more » « less
  4. Africa has over 2000 indigenous languages but they are under-represented in NLP research due to lack of datasets. In recent years, there have been progress in developing labelled corpora for African languages. However, they are often available in a single domain and may not generalize to other domains. In this paper, we focus on the task of sentiment classification for cross-domain adaptation. We create a new dataset, NollySenti—based on the Nollywood movie reviews for five languages widely spoken in Nigeria (English, Hausa, Igbo, Nigerian-Pidgin, and Yorùbá). We provide an extensive empirical evaluation using classical machine learning methods and pre-trained language models. Leveraging transfer learning, we compare the performance of cross-domain adaptation from Twitter domain, and cross-lingual adaptation from English language. Our evaluation shows that transfer from English in the same target domain leads to more than 5% improvement in accuracy compared to transfer from Twitter in the same language. To further mitigate the domain difference, we leverage machine translation (MT) from English to other Nigerian languages, which leads to a further improvement of 7% over cross-lingual evaluation. While MT to low-resource languages are often of low quality, through human evaluation, we show that most of the translated sentences preserve the sentiment of the original English reviews. 
    more » « less
  5. Cross-lingual transfer learning has become an important weapon to battle the unavailability of annotated resources for low-resource languages. One of the fundamental techniques to transfer across languages is learning language-agnostic representations, in the form of word embeddings or contextual encodings. In this work, we propose to leverage unannotated sentences from auxiliary languages to help learning language-agnostic representations. Specifically, we explore adversarial training for learning contextual encoders that produce invariant representations across languages to facilitate cross-lingual transfer. We conduct experiments on cross-lingual dependency parsing where we train a dependency parser on a source language and transfer it to a wide range of target languages. Experiments on 28 target languages demonstrate that adversarial training significantly improves the overall transfer performances under several different settings. We conduct a careful analysis to evaluate the language-agnostic representations resulted from adversarial training. 
    more » « less