Ensemble clustering generally integrates basic partitions into a consensus one through a graph partitioning method, which, however, has two limitations: 1) it neglects to reuse original features; 2) obtaining consensus partition with learnable graph representations is still under-explored. In this paper, we propose a novel Adversarial Graph Auto-Encoders (AGAE) model to incorporate ensemble clustering into a deep graph embedding process. Specifically, graph convolutional network is adopted as probabilistic encoder to jointly integrate the information from feature content and consensus graph, and a simple inner product layer is used as decoder to reconstruct graph with the encoded latent variables (i.e., embedding representations). Moreover, we develop an adversarial regularizer to guide the network training with an adaptive partition-dependent prior. Experiments on eight real-world datasets are presented to show the effectiveness of AGAE over several state-of-the-art deep embedding and ensemble clustering methods.
- Award ID(s):
- 1651902
- Publication Date:
- NSF-PAR ID:
- 10113653
- Journal Name:
- International Joint Conferences on Artificial Intelligence Organization
- Page Range or eLocation-ID:
- 3562 to 3568
- Sponsoring Org:
- National Science Foundation
More Like this
-
Network representation learning (NRL) is crucial in the area of graph learning. Recently, graph autoencoders and its variants have gained much attention and popularity among various types of node embedding approaches. Most existing graph autoencoder-based methods aim to minimize the reconstruction errors of the input network while not explicitly considering the semantic relatedness between nodes. In this paper, we propose a novel network embedding method which models the consistency across different views of networks. More specifically, we create a second view from the input network which captures the relation between nodes based on node content and enforce the latent representationsmore »
-
Multi-View Clustering (MVC) aims to find the cluster structure shared by multiple views of a particular dataset. Existing MVC methods mainly integrate the raw data from different views, while ignoring the high-level information. Thus, their performance may degrade due to the conflict between heterogeneous features and the noises existing in each individual view. To overcome this problem, we propose a novel Multi-View Ensemble Clustering (MVEC) framework to solve MVC in an Ensemble Clustering (EC) way, which generates Basic Partitions (BPs) for each view individually and seeks for a consensus partition among all the BPs. By this means, we naturally leveragemore »
-
In the past decade, the amount of attributed network data has skyrocketed, and the problem of identifying their underlying group structures has received significant attention. By leveraging both attribute and link information, recent state-of-the-art network clustering methods have achieved significant improvements on relatively clean datasets. However, the noisy nature of real-world attributed networks has long been overlooked, which leads to degraded performance facing missing or inaccurate attributes and links. In this work, we overcome such weaknesses by marrying the strengths of clustering and embedding on attributed networks. Specifically, we propose GRACE (GRAph Clustering with Embedding propagation), to simultaneously learn networkmore »
-
This paper presents a novel zero-shot learning approach towards personalized speech enhancement through the use of a sparsely active ensemble model. Optimizing speech denoising systems towards a particular test-time speaker can improve performance and reduce run-time complexity. However, test-time model adaptation may be challenging if collecting data from the test-time speaker is not possible. To this end, we propose using an ensemble model wherein each specialist module denoises noisy utterances from a distinct partition of training set speakers. The gating module inexpensively estimates test-time speaker characteristics in the form of an embedding vector and selects the most appropriate specialist modulemore »
-
Network embedding has demonstrated effective empirical performance for various network mining tasks such as node classification, link prediction, clustering, and anomaly detection. However, most of these algorithms focus on the single-view network scenario. From a real-world perspective, one individual node can have different connectivity patterns in different networks. For example, one user can have different relationships on Twitter, Facebook, and LinkedIn due to varying user behaviors on different platforms. In this case, jointly considering the structural information from multiple platforms (i.e., multiple views) can potentially lead to more comprehensive node representations, and eliminate noises and bias from a single view.more »