skip to main content

Title: Trust, Resilience and Interpretability of AI Models
In this tutorial, we present our recent work on building trusted, resilient and interpretable AI models by combining symbolic methods developed for automated reasoning with connectionist learning methods that use deep neural networks. The increasing adoption of artificial intelligence and machine learning in systems, including safety-critical systems, has created a pressing need for developing scalable techniques that can be used to establish trust over their safe behavior, resilience to adversarial attacks, and interpretability to enable human audits. This tutorial is comprised of three components: review of techniques for verification of neural networks, methods for using geometric invariants to defend against adversarial attacks, and techniques for extracting logical symbolic rules by reverse engineering machine learning models. These techniques form the core of TRINITY: Trusted, Resilient and Interpretable AI framework being developed at SRI. In this tutorial, we identify the key challenges in building the TRINITY framework, and report recent results on each of these three fronts.
Authors:
Award ID(s):
1740079 1750009
Publication Date:
NSF-PAR ID:
10119094
Journal Name:
Numerical Software Verification, 2019
Page Range or eLocation-ID:
3-25
Sponsoring Org:
National Science Foundation
More Like this
  1. Models produced by machine learning, particularly deep neural networks, are state-of-the-art for many machine learning tasks and demonstrate very high prediction accuracy. Unfortunately, these models are also very brittle and vulnerable to specially crafted adversarial examples. Recent results have shown that accuracy of these models can be reduced from close to hundred percent to below 5\% using adversarial examples. This brittleness of deep neural networks makes it challenging to deploy these learning models in security-critical areas where adversarial activity is expected, and cannot be ignored. A number of methods have been recently proposed to craft more effective and generalizable attacks on neural networks along with competing efforts to improve robustness of these learning models. But the current approaches to make machine learning techniques more resilient fall short of their goal. Further, the succession of new adversarial attacks against proposed methods to increase neural network robustness raises doubts about a foolproof approach to robustify machine learning models against all possible adversarial attacks. In this paper, we consider the problem of detecting adversarial examples. This would help identify when the learning models cannot be trusted without attempting to repair the models or make them robust to adversarial attacks. This goal of findingmore »limitations of the learning model presents a more tractable approach to protecting against adversarial attacks. Our approach is based on identifying a low dimensional manifold in which the training samples lie, and then using the distance of a new observation from this manifold to identify whether this data point is adversarial or not. Our empirical study demonstrates that adversarial examples not only lie farther away from the data manifold, but this distance from manifold of the adversarial examples increases with the attack confidence. Thus, adversarial examples that are likely to result into incorrect prediction by the machine learning model is also easier to detect by our approach. This is a first step towards formulating a novel approach based on computational geometry that can identify the limiting boundaries of a machine learning model, and detect adversarial attacks.« less
  2. Recent advances in machine learning and deep neural networks have led to the realization of many important applications in the area of personalized medicine. Whether it is detecting activities of daily living or analyzing images for cancerous cells, machine learning algorithms have become the dominant choice for such emerging applications. In particular, the state-of-the-art algorithms used for human activity recognition (HAR) using wearable inertial sensors utilize machine learning algorithms to detect health events and to make predictions from sensor data. Currently, however, there remains a gap in research on whether or not and how activity recognition algorithms may become the subject of adversarial attacks. In this paper, we take the first strides on (1) investigating methods of generating adversarial example in the context of HAR systems; (2) studying the vulnerability of activity recognition models to adversarial examples in feature and signal domain; and (3) investigating the effects of adversarial training on HAR systems. We introduce Adar, a novel computational framework for optimization-driven creation of adversarial examples in sensor-based activity recognition systems. Through extensive analysis based on real sensor data collected with human subjects, we found that simple evasion attacks are able to decrease the accuracy of a deep neural networkmore »from 95.1% to 3.4% and from 93.1% to 16.8% in the case of a convolutional neural network. With adversarial training, the robustness of the deep neural network increased on the adversarial examples by 49.1% in the worst case while the accuracy on clean samples decreased by 13.2%.« less
  3. Abstract

    Deep neural networks (DNNs) are widely used to handle many difficult tasks, such as image classification and malware detection, and achieve outstanding performance. However, recent studies on adversarial examples, which have maliciously undetectable perturbations added to their original samples that are indistinguishable by human eyes but mislead the machine learning approaches, show that machine learning models are vulnerable to security attacks. Though various adversarial retraining techniques have been developed in the past few years, none of them is scalable. In this paper, we propose a new iterative adversarial retraining approach to robustify the model and to reduce the effectiveness of adversarial inputs on DNN models. The proposed method retrains the model with both Gaussian noise augmentation and adversarial generation techniques for better generalization. Furthermore, the ensemble model is utilized during the testing phase in order to increase the robust test accuracy. The results from our extensive experiments demonstrate that the proposed approach increases the robustness of the DNN model against various adversarial attacks, specifically, fast gradient sign attack, Carlini and Wagner (C&W) attack, Projected Gradient Descent (PGD) attack, and DeepFool attack. To be precise, the robust classifier obtained by our proposed approach can maintain a performance accuracy of 99%more »on average on the standard test set. Moreover, we empirically evaluate the runtime of two of the most effective adversarial attacks, i.e., C&W attack and BIM attack, to find that the C&W attack can utilize GPU for faster adversarial example generation than the BIM attack can. For this reason, we further develop a parallel implementation of the proposed approach. This parallel implementation makes the proposed approach scalable for large datasets and complex models.

    « less
  4. Recent advances in machine learning enable wider applications of prediction models in cyber-physical systems. Smart grids are increasingly using distributed sensor settings for distributed sensor fusion and information processing. Load forecasting systems use these sensors to predict future loads to incorporate into dynamic pricing of power and grid maintenance. However, these inference predictors are highly complex and thus vulnerable to adversarial attacks. Moreover, the adversarial attacks are synthetic norm-bounded modifications to a limited number of sensors that can greatly affect the accuracy of the overall predictor. It can be much cheaper and effective to incorporate elements of security and resilience at the earliest stages of design. In this paper, we demonstrate how to analyze the security and resilience of learning-based prediction models in power distribution networks by utilizing a domain-specific deep-learning and testing framework. This framework is developed using DeepForge and enables rapid design and analysis of attack scenarios against distributed smart meters in a power distribution network. It runs the attack simulations in the cloud backend. In addition to the predictor model, we have integrated an anomaly detector to detect adversarial attacks targeting the predictor. We formulate the stealthy adversarial attacks as an optimization problem to maximize prediction lossmore »while minimizing the required perturbations. Under the worst-case setting, where the attacker has full knowledge of both the predictor and the detector, an iterative attack method has been developed to solve for the adversarial perturbation. We demonstrate the framework capabilities using a GridLAB-D based power distribution network model and show how stealthy adversarial attacks can affect smart grid prediction systems even with a partial control of network.« less
  5. Cyber Physical Systems (CPS) are characterized by their ability to integrate the physical and information or cyber worlds. Their deployment in critical infrastructure have demonstrated a potential to transform the world. However, harnessing this potential is limited by their critical nature and the far reaching effects of cyber attacks on human, infrastructure and the environment. An attraction for cyber concerns in CPS rises from the process of sending information from sensors to actuators over the wireless communication medium, thereby widening the attack surface. Traditionally, CPS security has been investigated from the perspective of preventing intruders from gaining access to the system using cryptography and other access control techniques. Most research work have therefore focused on the detection of attacks in CPS. However, in a world of increasing adversaries, it is becoming more difficult to totally prevent CPS from adversarial attacks, hence the need to focus on making CPS resilient. Resilient CPS are designed to withstand disruptions and remain functional despite the operation of adversaries. One of the dominant methodologies explored for building resilient CPS is dependent on machine learning (ML) algorithms. However, rising from recent research in adversarial ML, we posit that ML algorithms for securing CPS must themselves bemore »resilient. This article is therefore aimed at comprehensively surveying the interactions between resilient CPS using ML and resilient ML when applied in CPS. The paper concludes with a number of research trends and promising future research directions. Furthermore, with this article, readers can have a thorough understanding of recent advances on ML-based security and securing ML for CPS and countermeasures, as well as research trends in this active research area.« less