skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: F0-Consistent Many-To-Many Non-Parallel Voice Conversion Via Conditional Autoencoder
Non-parallel many-to-many voice conversion remains an interesting but challenging speech processing task. Many style-transfer-inspired methods such as generative adversarial networks (GANs) and variational autoencoders (VAEs) have been proposed. Recently, AUTOVC, a conditional autoencoders (CAEs) based method achieved state-of-the-art results by disentangling the speaker identity and speech content using information-constraining bottlenecks, and it achieves zero-shot conversion by swapping in a different speaker’s identity embedding to synthesize a new voice. However, we found that while speaker identity is disentangled from speech content, a significant amount of prosodic information, such as source F0, leaks through the bottleneck, causing target F0 to fluctuate unnaturally. Furthermore, AUTOVC has no control of the converted F0 and thus unsuitable for many applications. In the paper, we modified and improved autoencoder-based voice conversion to disentangle content, F0, and speaker identity at the same time. Therefore, we can control the F0 contour, generate speech with F0 consistent with the target speaker, and significantly improve quality and similarity. We support our improvement through quantitative and qualitative analysis.  more » « less
Award ID(s):
1910319
PAR ID:
10147857
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE ICASSP 2020
Page Range / eLocation ID:
6284 to 6288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Voice conversion (VC) aims at altering a person's voice to make it sound similar to the voice of another person while preserving linguistic content. Existing methods suffer from a dilemma between content intelligibility and speaker similarity; i.e., methods with higher intelligibility usually have a lower speaker similarity, while methods with higher speaker similarity usually require plenty of target speaker voice data to achieve high intelligibility. In this work, we propose a novel method Phoneme Hallucinator that achieves the best of both worlds. Phoneme Hallucinator is a one-shot VC model; it adopts a novel model to hallucinate diversified and high-fidelity target speaker phonemes based just on a short target speaker voice (e.g. 3 seconds). The hallucinated phonemes are then exploited to perform neighbor-based voice conversion. Our model is a text-free, any-to-any VC model that requires no text annotations and supports conversion to any unseen speaker. Quantitative and qualitative evaluations show that Phoneme Hallucinator outperforms existing VC methods for both intelligibility and speaker similarity. 
    more » « less
  2. The prevalence of voice spoofing attacks in today’s digital world has become a critical security concern. Attackers employ various techniques, such as voice conversion (VC) and text-to-speech (TTS), to generate synthetic speech that imitates the victim’s voice and gain access to sensitive information. The recent advances in synthetic speech generation pose a significant threat to modern security systems, while traditional voice authentication methods are incapable of detecting them effectively. To address this issue, a novel solution for logical access (LA)-based synthetic speech detection is proposed in this paper. SpoTNet is an attention-based spoofing transformer network that includes crafted front-end spoofing features and deep attentive features retrieved using the developed logical spoofing transformer encoder (LSTE). The derived attentive features were then processed by the proposed multi-layer spoofing classifier to classify speech samples as bona fide or synthetic. In synthetic speeches produced by the TTS algorithm, the spectral characteristics of the synthetic speech are altered to match the target speaker’s formant frequencies, while in VC attacks, the temporal alignment of the speech segments is manipulated to preserve the target speaker’s prosodic features. By highlighting these observations, this paper targets the prosodic and phonetic-based crafted features, i.e., the Mel-spectrogram, spectral contrast, and spectral envelope, presenting an effective preprocessing pipeline proven to be effective in synthetic speech detection. The proposed solution achieved state-of-the-art performance against eight recent feature fusion methods with lower EER of 0.95% on the ASVspoof-LA dataset, demonstrating its potential to advance the field of speaker identification and improve speaker recognition systems. 
    more » « less
  3. Abstract Communicating with a speaker with a different accent can affect one’s own speech. Despite the strength of evidence for perception-production transfer in speech, the nature of transfer has remained elusive, with variable results regarding the acoustic properties that transfer between speakers and the characteristics of the speakers who exhibit transfer. The current study investigates perception-production transfer through the lens of statistical learning across passive exposure to speech. Participants experienced a short sequence of acoustically variable minimal pair (beer/pier) utterances conveying either an accent or typical American English acoustics, categorized a perceptually ambiguous test stimulus, and then repeated the test stimulus aloud. In thecanonicalcondition, /b/–/p/ fundamental frequency (F0) and voice onset time (VOT) covaried according to typical English patterns. In thereversecondition, the F0xVOT relationship reversed to create an “accent” with speech input regularities atypical of American English. Replicating prior studies, F0 played less of a role in perceptual speech categorization in reverse compared with canonical statistical contexts. Critically, this down-weighting transferred to production, with systematic down-weighting of F0 in listeners’ own speech productions in reverse compared with canonical contexts that was robust across male and female participants. Thus, the mapping of acoustics to speech categories is rapidly adjusted by short-term statistical learning across passive listening and these adjustments transfer to influence listeners’ own speech productions. 
    more » « less
  4. Abstract Silent speech interfaces offer an alternative and efficient communication modality for individuals with voice disorders and when the vocalized speech communication is compromised by noisy environments. Despite the recent progress in developing silent speech interfaces, these systems face several challenges that prevent their wide acceptance, such as bulkiness, obtrusiveness, and immobility. Herein, the material optimization, structural design, deep learning algorithm, and system integration of mechanically and visually unobtrusive silent speech interfaces are presented that can realize both speaker identification and speech content identification. Conformal, transparent, and self‐adhesive electromyography electrode arrays are designed for capturing speech‐relevant muscle activities. Temporal convolutional networks are employed for recognizing speakers and converting sensing signals into spoken content. The resulting silent speech interfaces achieve a 97.5% speaker classification accuracy and 91.5% keyword classification accuracy using four electrodes. The speech interface is further integrated with an optical hand‐tracking system and a robotic manipulator for human‐robot collaboration in both assembly and disassembly processes. The integrated system achieves the control of the robot manipulator by silent speech and facilitates the hand‐over process by hand motion trajectory detection. The developed framework enables natural robot control in noisy environments and lays the ground for collaborative human‐robot tasks involving multiple human operators. 
    more » « less
  5. Voice pitch carries linguistic as well as non-linguistic information. Previous studies have described cortical tracking of voice pitch in clean speech, with responses reflecting both pitch strength and pitch value. However, pitch is also a powerful cue for auditory stream segregation, especially when competing streams have pitch differing in fundamental frequency, as is the case when multiple speakers talk simultaneously. We therefore investigated how cortical speech pitch tracking is affected in the presence of a second, task-irrelevant speaker. We analyzed human magnetoencephalography (MEG) responses to continuous narrative speech, presented either as a single talker in a quiet background, or as a two-talker mixture of a male and a female speaker. In clean speech, voice pitch was associated with a right-dominant response, peaking at a latency of around 100 ms, consistent with previous EEG and ECoG results. The response tracked both the presence of pitch as well as the relative value of the speaker’s fundamental frequency. In the two-talker mixture, pitch of the attended speaker was tracked bilaterally, regardless of whether or not there was simultaneously present pitch in the speech of the irrelevant speaker. Pitch tracking for the irrelevant speaker was reduced: only the right hemisphere still significantly tracked pitch of the unattended speaker, and only during intervals in which no pitch was present in the attended talker’s speech. Taken together, these results suggest that pitch-based segregation of multiple speakers, at least as measured by macroscopic cortical tracking, is not entirely automatic but strongly dependent on selective attention. 
    more » « less