skip to main content


Title: Fooling Detection Alone is Not Enough: First Adversarial Attack against Multiple Object Tracking
Recent work in adversarial machine learning started to focus on the visual perception in autonomous driving and studied Adversarial Examples (AEs) for object detection models. However, in such visual perception pipeline the detected objects must also be tracked, in a process called Multiple Object Tracking (MOT), to build the moving trajectories of surrounding obstacles. Since MOT is designed to be robust against errors in object detection, it poses a general challenge to existing attack techniques that blindly target objection detection: we find that a success rate of over 98% is needed for them to actually affect the tracking results, a requirement that no existing attack technique can satisfy. In this paper, we are the first to study adversarial machine learning attacks against the complete visual perception pipeline in autonomous driving, and discover a novel attack technique, tracker hijacking, that can effectively fool MOT using AEs on object detection. Using our technique, successful AEs on as few as one single frame can move an existing object in to or out of the headway of an autonomous vehicle to cause potential safety hazards. We perform evaluation using the Berkeley Deep Drive dataset and find that on average when 3 frames are attacked, our attack can have a nearly 100% success rate while attacks that blindly target object detection only have up to 25%.  more » « less
Award ID(s):
1801751
NSF-PAR ID:
10156929
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Conference on Learning Representations (ICLR)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, adversarial examples against object detection have been widely studied. However, it is difficult for these attacks to have an impact on visual perception in autonomous driving because the complete visual pipeline of real-world autonomous driving systems includes not only object detection but also object tracking. In this paper, we present a novel tracker hijacking attack against the multi-target tracking algorithm employed by real-world autonomous driving systems, which controls the bounding box of object detection to spoof the multiple object tracking process. Our approach exploits the detection box generation process of the anchor-based object detection algorithm and designs new optimization methods to generate adversarial patches that can successfully perform tracker hijacking attacks, causing security risks. The evaluation results show that our approach has 85% attack success rate on two detection models employed by real-world autonomous driving systems. We discuss our potential next step for this work. 
    more » « less
  2. null (Ed.)
    In Autonomous Driving (AD) systems, perception is both security and safety critical. Despite various prior studies on its security issues, all of them only consider attacks on cameraor LiDAR-based AD perception alone. However, production AD systems today predominantly adopt a Multi-Sensor Fusion (MSF) based design, which in principle can be more robust against these attacks under the assumption that not all fusion sources are (or can be) attacked at the same time. In this paper, we present the first study of security issues of MSF-based perception in AD systems. We directly challenge the basic MSF design assumption above by exploring the possibility of attacking all fusion sources simultaneously. This allows us for the first time to understand how much security guarantee MSF can fundamentally provide as a general defense strategy for AD perception. We formulate the attack as an optimization problem to generate a physically-realizable, adversarial 3D-printed object that misleads an AD system to fail in detecting it and thus crash into it. To systematically generate such a physical-world attack, we propose a novel attack pipeline that addresses two main design challenges: (1) non-differentiable target camera and LiDAR sensing systems, and (2) non-differentiable cell-level aggregated features popularly used in LiDAR-based AD perception. We evaluate our attack on MSF algorithms included in representative open-source industry-grade AD systems in real-world driving scenarios. Our results show that the attack achieves over 90% success rate across different object types and MSF algorithms. Our attack is also found stealthy, robust to victim positions, transferable across MSF algorithms, and physical-world realizable after being 3D-printed and captured by LiDAR and camera devices. To concretely assess the end-to-end safety impact, we further perform simulation evaluation and show that it can cause a 100% vehicle collision rate for an industry-grade AD system. We also evaluate and discuss defense strategies. 
    more » « less
  3. Modern autonomous systems rely on both object detection and object tracking in their visual perception pipelines. Although many recent works have attacked the object detection component of autonomous vehicles, these attacks do not work on full pipelines that integrate object tracking to enhance the object detector's accuracy. Meanwhile, existing attacks against object tracking either lack real-world applicability or do not work against a powerful class of object trackers, Siamese trackers. In this paper, we present AttrackZone, a new physically-realizable tracker hijacking attack against Siamese trackers that systematically determines valid regions in an environment that can be used for physical perturbations. AttrackZone exploits the heatmap generation process of Siamese Region Proposal Networks in order to take control of an object's bounding box, resulting in physical consequences including vehicle collisions and masked intrusion of pedestrians into unauthorized areas. Evaluations in both the digital and physical domain show that AttrackZone achieves its attack goals 92% of the time, requiring only 0.3-3 seconds on average. 
    more » « less
  4. Recent advances in machine learning, especially techniques such as deep neural networks, are enabling a range of emerging applications. One such example is autonomous driving, which often relies on deep learning for perception. However, deep learning-based perception has been shown to be vulnerable to a host of subtle adversarial manipulations of images. Nevertheless, the vast majority of such demonstrations focus on perception that is disembodied from end-to-end control. We present novel end-to-end attacks on autonomous driving in simulation, using simple physically realizable attacks: the painting of black lines on the road. These attacks target deep neural network models for endto-end autonomous driving control. A systematic investigation shows that such attacks are easy to engineer, and we describe scenarios (e.g., right turns) in which they are highly effective. We define several objective functions that quantify the success of an attack and develop techniques based on Bayesian Optimization to efficiently traverse the search space of higher dimensional attacks. Additionally, we define a novel class of hijacking attacks, where painted lines on the road cause the driverless car to follow a target path. Through the use of network deconvolution, we provide insights into the successful attacks, which appear to work by mimicking activations of entirely different scenarios. Our code is available on https://github.com/xz-group/AdverseDrive 
    more » « less
  5. Despite many attempts, the state-of-the-art of adversarial machine learning on malware detection systems generally yield unexecutable samples. In this work, we set out to examine the robustness of visualization-based malware detection system against adversarial examples (AEs) that not only are able to fool the model, but also maintain the executability of the original input. As such, we first investigate the application of existing off-the-shelf adversarial attack approaches on malware detection systems through which we found that those approaches do not necessarily maintain the functionality of the original inputs. Therefore, we proposed an approach to generate adversarial examples, COPYCAT, which is specifically designed for malware detection systems considering two main goals; achieving a high misclassification rate and maintaining the executability and functionality of the original input. We designed two main configurations for COPYCAT, namely AE padding and sample injection. While the first configuration results in untargeted misclassification attacks, the sample injection configuration is able to force the model to generate a targeted output, which is highly desirable in the malware attribution setting. We evaluate the performance of COPYCAT through an extensive set of experiments on two malware datasets, and report that we were able to generate adversarial samples that are misclassified at a rate of 98.9% and 96.5% with Windows and IoT binary datasets, respectively, outperforming the misclassification rates in the literature. Most importantly, we report that those AEs were executable unlike AEs generated by off-the-shelf approaches. Our transferability study demonstrates that the generated AEs through our proposed method can be generalized to other models. 
    more » « less