Background & Program Description: The link between student engagement and retention is well-established in the education literature. As a result, many colleges have developed first-year experience programs to engage students in early technical work and to promote community-building. However, many of these student success programs require participation in extracurricular activities, which require time outside of class. Yet time for extracurricular activities is a luxury that many students of low socioeconomic status (SES) cannot afford due to family or work obligations. The Scholarships in STEM (S-STEM) program, funded by the National Science Foundation, provides crucial financial support to high-achieving low-SES STEM students. The S-STEM scholarships give students the option to work less or not at all. The intended result is that students regain the time afforded to their more privileged peers, thereby also giving them the opportunity to more effectively engage with their institution, studies, and peers. The Endeavour Program is a two-year program that incorporates the S-STEM financial support into a multi-faceted and multi-college program in STEM designed to increase the level of student engagement in school. The scholars, who are recruited from three colleges, take classes together, work on hands-on team projects, attend professional and personal development events, participatemore »
A Collective Impact Model Towards Increasing STEM Major Student Retention
This article presents the research findings of a multidisciplinary teams collective research effort at one university over a five-year period as funded by the National Science Foundations mproving ndergraduate TE Education (IUSE) program. A collaborative learning and retention action research effort at a large Hispanic Serving Institution is analyzed using mixed methods to document the power of collective impact as the foundation for a learning support model for students historically underrepresented majoring in science, technology, engineering and mathematics (STEM) academic programs. The actions of the team of researchers are presented to describe the ising tars Collective mpact model and the impacts achieved. This is a model that aligns objectives, intervention efforts, and reports collective results. The long-term goals of the Rising tars Collective mpact multiple programs managed by the funded program team included the following: (a) to improve the campus sense of community for students historically under-represented in STEM, (b) to establish innovative and robust STEM education research-based practices to support critical skill attainment for students, and (c) to support faculty understanding of the funds of knowledge of diverse students. The positive student retention and success impacts of this research effort are measured through quantitative statistical analysis of the changes more »
- Award ID(s):
- 1431578
- Publication Date:
- NSF-PAR ID:
- 10160661
- Journal Name:
- Journal of college academic support programs
- Volume:
- 2
- Issue:
- 2
- Page Range or eLocation-ID:
- 21-30
- ISSN:
- 2577-9990
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different raciallymore »
-
The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is a five-year program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This project is funded by an NSF S-STEM (Scholarships in Science, Technology, Engineering, and Mathematics) grant awarded in January 2017. Through an inclusive and long-range effort, the college identified a strong need for financial and comprehensive supports for STEM students. This project will offer financial, academic, and professional support to three two-year cohorts of students. The SEECRS project aims to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Scholarship recipients will be supported through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Students are introduced to disciplines of interest through opportunities to engage in course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and seminars presented by STEM professionals. Communities of practice will be nurtured through the introduction of cohort building and facultymore »
-
Research Experience for Teachers (RET) programs are National Science Foundation (NSF) funded programs designed to provide K- 12 Science, Technology, Engineering, and Mathematics (STEM) teachers with immersive, hands-on research experiences at Universities around the country. The NSF RET in nanotechnology encourages teachers to translate cutting-edge research into culturally relevant Project-Based Learning (PjBL) and engineering curriculum. Traditionally, the evaluation of RET programs focuses on the growth and development of teacher self-efficacy, engineering content knowledge gains, or classroom implementation of developed curriculum materials. However, reported methods for evaluating the impact of RETs on their female, minority student populations' high school graduation and undergraduate STEM major rates are limited. This study's objective was to compare RET high school student graduation rates and undergraduate STEM major rates across gender, race, and ethnicity to a comparison sample to determine the RET program's long-term impact on students' likelihood of pursuing STEM careers. The approach of collecting and analyzing the Texas Education Research Center Database (EdRC) data is a novel methodology for assessing RET programs' effectiveness on students. The EdRC is a repository of K-12 student data from the Texas Education Agency (TEA) and Higher Education data from the Texas Higher Education Coordinating Board (THECB). This jointmore »
-
Wright College, an urban open-access community college, independently accredited within a larger community college system, is a federally recognized Hispanic-Serving Institution (HSI) with the largest community college enrollment of Hispanic students in its state. In 2018, Wright College received an inaugural National Science Foundation-Hispanic Serving Institution (NSF:HSI) research project grant “Building Capacity: Building Bridges into Engineering and Computer Science”. The project's overall goals are to increase underrepresented students pursuing an associate degree (AES) in engineering and computer science and streamline two transitions: high school to community college and 2-year to 4-year institutions. Through the grant, Wright College created a holistic and programmatic framework that examines and correlates engineering students' self-efficacy (the belief that students will succeed as engineers) and a sense of belonging with student success. The project focuses on Near-STEM ready students (students who need up to four semesters of math remediation before moving into Calculus 1). The project assesses qualitative and quantitative outcomes through surveys and case study interviews supplemented with retention, persistence, transfer, associate and bachelor's degree completion rates, and time for degree completion. The key research approach is to correlate student success data with self-efficacy and belonging measures. Outcomes and Impacts Three years into the project,more »