skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Telecentric broadband objective lenses for optical coherence tomography (OCT) in the context of low uncertainty metrology of freeform optical components: from design to testing for wavefront and telecentricity
Freeform optical components enable significant advances for optical systems. A major challenge for freeform optics is the current lack of metrology methods with measurement uncertainty on the order of tens of nanometers or less. Towards addressing this challenge, optical coherence tomography (OCT) is a viable technique. In the context of low uncertainty metrology, the design requirements pertaining to the sample arm of an OCT metrology system are explicitly addressed in this paper. Two telecentric, broadband, diffraction limited, custom objective lens designs are presented with their design strategies. One objective lens was fabricated and experimentally tested for wavefront performance and telecentricity. This lens demonstrates near diffraction limited performance and a maximum deviation from telecentricity of 8.7 arcseconds across the full field of view, correlating to measurement uncertainty of less than 12 nm in simulation. The telecentricity test method developed completes the loop with respect to the design requirements and strategies presented and provides further intuition for telecentric lens designs in general. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement  more » « less
Award ID(s):
1822049 1338877
PAR ID:
10161247
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Optics express
Volume:
27
Issue:
5
ISSN:
1094-4087
Page Range / eLocation ID:
6184-6200
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Conventional refractive microscope objective lenses have limited applicability to a range of imaging modalities due to the dispersive nature of their optical elements. Designing a conventional refractive microscope objective that provides well-corrected imaging over a broad spectral range can be challenging, if not impossible. In contrast, reflective optics are inherently achromatic, so a system composed entirely of reflective elements is free from chromatic aberrations and, as a result, can image over an ultra-wide spectral range with perfect color correction. This study explores the design space of unobscured high numerical aperture, all-reflective microscope objectives. In particular, using freeform optical elements we obviate the need for a center obscuration, rendering the objective’s modulation transfer function comparable to that of refractive lens systems of similar numerical aperture. We detail the design process of the reflective objective, from determining the design specifications to the system optimization and sensitivity analysis. The outcome is an all-reflective freeform microscope objective lens with a 0.65 numerical aperture that provides diffraction-limited imaging and is compatible with the geometric constraints of commercial microscope systems. 
    more » « less
  2. Transverse translation-diverse phase retrieval (TTDPR), a ptychographic wavefront-sensing technique, is a viable method for optical surface metrology due to its relatively simple hardware requirements, flexibility, and high demonstrated accuracy in other fields. In TTDPR, a subaperture illumination pattern is scanned across an optic under test, and the reflected intensity is gathered on an array detector near focus. A nonlinear optimization algorithm is used to reconstruct the wavefront aberration at the test surface, from which we can solve for surface error, using intensity patterns from multiple scan positions. TTDPR is an advantageous method for aspheric and freeform metrology, because measurements can be performed without null optics. We report on a sensitivity analysis of TTDPR using simulations of a freeform concave mirror measurement. Simulations were performed to test TTDPR algorithmic performance as a function of various parameters, including detector SNR and position uncertainty of the illumination. 
    more » « less
  3. Marshall, Heather K; Spyromilio, Jason; Usuda, Tomonori (Ed.)
    We present the optical design for Cryoscope, a 0.26 m aperture telescope that is a f/2 objective operating over the photometric K band (1.99 to 2.55 μm) with diffraction limited imaging. It has a 16 deg2 FoV with a 7.1′′/pix plate scale on a 2048×2048 18 μm/pixel Teledyne H2RG detector array. The objective is a catadioptric design incorporating two thin fused silica meniscus lenses near the entrance aperture, a spherical primary mirror, and a doublet immediately in front of the detector to flatten the image surface. The design solution is capable of delivering diffraction limited images over a 10° field diameter at f/1.25 in the NIR. The use of fused silica for the first two lens elements allows the design to be used for a broad range of applications from the vacuum ultraviolet to thermal IR with only re-optimization of the field flattening doublet. In the VUV (185 to 300 nm) the design is no longer diffraction limited, but can still be made to be pixel limited with detector arrays having pixels as small as 10 μm. The design provides a compact, wide field, and fast objective that can scale to a 1 m-class telescope and offers several benefits over a classical Schmidt telescope. The convex fused silica meniscus lens is strong enough to serve as a vacuum window allowing the entire optical path to be cryogenically cooled to maintain low thermal emission while delivering two orders of magnitude larger field of view than previous ground-based designs for the thermal infrared. 
    more » « less
  4. We propose and demonstrate a general design method for refractive two-element systems enabling variable optical performance between two specified boundary conditions. Similar to the Alvarez lens, small, relative lateral shifts in opposite directions are applied to a pair of plano-freeform elements. The surface prescriptions of the boundary lenses and a maximum desired shift between freeform plates are the main design inputs. In contrast to previous approaches, this method is not limited to boundaries with similar optical functions and can enable a wide range of challenging, dynamic functions for both imaging and non-imaging applications. Background theory and design processes are presented both for cases that are conducive to analytical surface descriptions, as well as for non-analytic surfaces that must be described numerically. Multiple examples are presented to demonstrate the flexibility of the proposed method. 
    more » « less
  5. The invention of new design techniques for unobscured reflective systems using freeform surfaces has expanded the optical design space for these system types. We illustrate how the use of freeform surfaces can expand the design space of the Three Mirror Compact design type to allow both better performance at a given system volume and smaller volumes for a given performance target. By evolving designs using conventional off-axis asphere type surfaces to ever smaller volumes and then converting these off-axis asphere descriptions to centered Zernike descriptions, we show that the wavefront error improves by up to 69% in this case by allowing the surfaces to break rotational symmetry. In addition, we show that evolving designs from the same starting point as the off-axis asphere designs but instead using a centered Zernike description can produce a design with a 39% smaller volume in this case while maintaining the same diffraction-limited performance. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
    more » « less