skip to main content


Title: D/H ratios and H2O contents record degassing and rehydration history of rhyolitic magma and pyroclasts
Volcanic eruptions of rhyolitic magma often show shifts from powerful (Vulcanian to Plinian) explosive episodes to a more gentle effusion of viscous lava forming obsidian flows. Another prevailing characteris-tic of these eruptions is the presence of pyroclastic obsidians intermingled with the explosive tephra. This dense, juvenile product is similar to the tephra and obsidian flow in composition, but is generally less degassed than its flow counterpart. The formation mechanism(s) of pyroclastic obsidians and the information they can provide concerning the extent to which magma degassing modulates the eruptive style of rhyolitic eruptions are currently subject to active research. Porous tephra and pyroclastic and flow obsidians from the 1060CE Glass Mountain rhyolitic eruption at Medicine Lake Volcano (California) were analyzed for their porosity, φ, water content, H2O, and hydrogen isotopic composition, δD. H2O in porous pyroclasts is correlated negatively with δD and positively with φ, indicating that the samples were affected by post-eruptive rehydration. Numerical modeling suggests that this rehydration occurred at an average rate of 10−23.5±0.5m2s−1during the ∼960 years since the eruption, causing some pyroclasts to gain up to 1 wt%of meteoric water. Pyroclastic and flow obsidians were not affected by rehydration due to their very low porosity. Comparison between modeled δD-H2O relationships in degassing magma and values measured in the Glass Mountain samples supports the idea that rhyolitic magma degasses in closed-system until its porosity reaches a value of about 65±5%, beyond which degassing occurs in open-system until quench. During the explosive phase, rapidly ascending magma fragments soon after it becomes permeable, creating porous lapilli and ash that continue to degas in open-system within an expanding gas phase. As suggested by recent studies, some ash may aggregate and sinter on the conduit sides at different depths above the fragmentation level, partly equilibrating with the continuously fluxing heavier magmatic vapor, explaining the wide range of H2O contents and high variability in δD measured in the pyroclastic obsidians. Using only H2O and δD, it is impossible to rule out the possibility that pyroclastic obsidians may also form by permeable foam collapse, either syn-explosively near the conduit sides below the fragmentation level or during more effusive periods interspersed in the explosive phase. During the final effusive phase of the eruption, slowly ascending magma degasses in open-system until it reaches the surface, creating flows with low H2O and δD. This study shows that H2O measured in highly porous pyroclasts of a few hundred years or more cannot be used to infer syn-eruptive magma degassing pathways, unless careful assessment of post-eruptive rehydration is first carried out. If their mechanism of formation can be better understood, detailed analysis of the variations in texture and volatile content of pyroclastic obsidians throughout the explosive phase may help decipher the reasons why rhyolitic eruptions commonly shift from explosive to effusive phases.  more » « less
Award ID(s):
1822977
NSF-PAR ID:
10168159
Author(s) / Creator(s):
Date Published:
Journal Name:
Earth and planetary science letters
ISSN:
0012-821X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mafic volcanic activity is dominated by effusive to mildly explosive eruptions. Plinian and ignimbrite-forming mafic eruptions, while rare, are also possible; however, the conditions that promote such explosivity are still being explored. Eruption style is determined by the ability of gas to escape as magma ascends, which tends to be easier in low-viscosity, mafic magmas. If magma permeability is sufficiently high to reduce bubble overpressure during ascent, volatiles may escape from the magma, inhibiting violent explosive activity. In contrast, if the permeability is sufficiently low to retain the gas phase within the magma during ascent, bubble overpressure may drive magma fragmentation. Rapid ascent may induce disequilibrium crystallization, increasing viscosity and affecting the bubble network with consequences for permeability, and hence, explosivity. To explore the conditions that promote strongly explosive mafic volcanism, we combine microlite textural analyses with synchrotron x-ray computed microtomography of 10 pyroclasts from the 12.6 ka mafic Curacautín Ignimbrite (Llaima Volcano, Chile). We quantify microlite crystal size distributions (CSD), microlite number densities, porosity, bubble interconnectivity, bubble number density, and geometrical properties of the porous media to investigate the role of magma degassing processes at mafic explosive eruptions. We use an analytical technique to estimate permeability and tortuosity by combing the Kozeny-Carman relationship, tortuosity factor, and pyroclast vesicle textures. The groundmass of our samples is composed of up to 44% plagioclase microlites, > 85% of which are < 10 µm in length. In addition, we identify two populations of vesicles in our samples: (1) a convoluted interconnected vesicle network produced by extensive coalescence of smaller vesicles (> 99% of pore volume), and (2) a population of very small and completely isolated vesicles (< 1% of porosity). Computed permeability ranges from 3.0 × 10−13to 6.3 × 10−12m2, which are lower than the similarly explosive mafic eruptions of Tarawera (1886; New Zealand) and Etna (112 BC; Italy). The combination of our CSDs, microlite number densities, and 3D vesicle textures evidence rapid ascent that induced high disequilibrium conditions, promoting rapid syn-eruptive crystallization of microlites within the shallow conduit. We interpret that microlite crystallization increased viscosity while simultaneously forcing bubbles to deform as they grew together, resulting in the permeable by highly tortuous network of vesicles. Using the bubble number densities for the isolated vesicles (0.1-3−3 × 104 bubbles per mm3), we obtain a minimum average decompression rate of 1.4 MPa/s. Despite the textural evidence that the Curacautín magma reached the percolation threshold, we propose that rapid ascent suppressed outgassing and increased bubble overpressures, leading to explosive fragmentation. Further, using the porosity and permeability of our samples, we estimated that a bubble overpressure > 5 MPa could have been sufficient to fragment the Curacautín magma. Other mafic explosive eruptions report similar disequilibrium conditions induced by rapid ascent rate, implying that syn-eruptive disequilibrium conditions may control the explosivity of mafic eruptions more generally.

     
    more » « less
  2. null (Ed.)
    Silicic volcanic activity has long been framed as either violently explosive or gently effusive. However, recent ob- servations demonstrate that explosive and effusive behavior can occur simultaneously. Here, we propose that rhyolitic magma feeding subaerial eruptions generally fragments during ascent through the upper crust and that effusive eruptions result from conduit blockage and sintering of the pyroclastic products of deeper cryptic frag- mentation. Our proposal is supported by (i) rhyolitic lavas are volatile depleted; (ii) textural evidence supports a pyroclastic origin for effusive products; (iii) numerical models show that small ash particles !10−5 m can diffusive- ly degas, stick, and sinter to low porosity, in the time available between fragmentation and the surface; and (iv) inferred ascent rates from both explosive and apparently effusive eruptions can overlap. Our model reconciles previously paradoxical observations and offers a new framework in which to evaluate physical, numerical, and geochemical models of Earth’s most violent volcanic eruptions. 
    more » « less
  3. null (Ed.)
    Abstract Dense, glassy pyroclasts found in products of explosive eruptions are commonly employed to investigate volcanic conduit processes through measurement of their volatile inventories. This approach rests upon the tacit assumption that the obsidian clasts are juvenile, that is, genetically related to the erupting magma. Pyroclastic deposits within the Yellowstone-Snake River Plain province almost without exception contain dense, glassy clasts, previously interpreted as hyaloclastite, while other lithologies, including crystallised rhyolite, are extremely rare. We investigate the origin of these dense, glassy clasts from a coupled geochemical and textural perspective combining literature data and case studies from Cougar Point Tuff XIII, Wolverine Creek Tuff, and Mesa Falls Tuff spanning 10 My of silicic volcanism. These results indicate that the trace elemental compositions of the dense glasses mostly overlap with the vesiculated component of each deposit, while being distinct from nearby units, thus indicating that dense glasses are juvenile. Textural complexity of the dense clasts varies across our examples. Cougar Point Tuff XIII contains a remarkable diversity of clast appearances with the same glass composition including obsidian-within-obsidian clasts. Mesa Falls Tuff contains clasts with the same glass compositions but with stark variations in phenocryst content (0 to 45%). Cumulatively, our results support a model where most dense, glassy clasts reflect conduit material that passed through multiple cycles of fracturing and sintering with concurrent mixing of glass and various crystal components. This is in contrast to previous interpretations of these clasts as entrained hyaloclastite and relaxes the requirement for water-magma interaction within the eruptive centres of the Yellowstone-Snake River Plain province. 
    more » « less
  4. null (Ed.)
    Abstract Volcán Quizapu, Chile, is an under-monitored volcano that was the site of two historical eruptions: an effusive eruption in 1846–1847 and a Plinian eruption in 1932, both of which discharged ∼5 km3 (dense rock equivalent) of lava and/or tephra. The majority of material erupted in both cases is trachydacite, nearly identical for each event. We present H2O-saturated, phase equilibrium experiments on this end-member dacite magma, using a pumice sample from the 1932 eruption as the main starting material. At an oxygen fugacity (fO2) of ∼NNO + 0·2 (where NNO is the nickel–nickel oxide buffer), the phase assemblage of An25–30 plagioclase + amphibole + orthopyroxene, without biotite, is stable at 865 ± 10 °C and 110 ± 20 MPa H2O pressure (PH2O), corresponding to ∼4 km depth. At these conditions, experiments also reproduce the quenched glass composition of the starting pumice. At slightly higher PH2O and below 860 °C, biotite joins the equilibrium assemblage. Because biotite is not part of the observed Quizapu phase assemblage, its presence places an upper limit on PH2O. At the determined storage PH2O of ∼110 MPa, H2O undersaturation of the magma with XH2Ofluid = 0·87 would align Ptotal to mineral-based geobarometry estimates of ∼130 MPa. However, XH2Ofluid < 1 is not required to reproduce the Quizapu dacite phase assemblage and compositions. A second suite of experiments at lower fO2 shows that the stability fields of the hydrous silicates (amphibole and biotite) are significantly restricted at NNO – 2 relative to NNO + 0·2. Additional observations of Quizapu lava and pumice samples support the existing hypothesis that rapid pre-eruptive heating drove the effusive 1846–1847 eruption, with important refinements. We demonstrate that microlites in the end-member dacite lavas are consistent with in situ crystallization (during ascent), rather than transfer from an andesite. In one end-member dacite lava, newly identified reverse zoning in orthopyroxene and incipient destabilization of amphibole are consistent with small degrees of heating. Our work articulates a clear direction for future Quizapu studies, which are warranted given the active nature of the Cerro Azul–Descabezado Grande volcanic axis. 
    more » « less
  5. Abstract

    Explosive volcanic eruptions radiate seismic waves as a consequence of pressure and shear traction changes within the conduit/chamber system. Kinematic source inversions utilize these waves to determine equivalent seismic force and moment tensor sources, but relation to eruptive processes is often ambiguous and nonunique. In this work, we provide an alternative, forward modeling approach to calculate moment tensor and force equivalents of a model of eruptive conduit flow and chamber depressurization. We explain the equivalence of two seismic force descriptions, the first in terms of traction changes on conduit/chamber walls, and the second in terms of changes in magma momentum, weight, and momentum transfer to the atmosphere. Eruption onset is marked by a downward seismic force, associated with loss of restraining shear tractions from fragmentation. This is followed by a much larger upward seismic force from upward drag of ascending magma and reduction of magma weight remaining in the conduit/chamber system. The static force is upward, arising from weight reduction. We calculate synthetic seismograms to examine the expression of eruptive processes at different receiver distances. Filtering these synthetics to the frequency band typically resolved by broadband seismometers produces waveforms similar to very long period seismic events observed in strombolian and vulcanian eruptions. However, filtering heavily distorts waveforms, accentuating processes in early, unsteady parts of eruptions and eliminating information about longer (ultra long period time scale depressurization and weight changes that dominate unfiltered seismograms. Our workflow can be utilized to directly and quantitatively connect eruption models with seismic observations.

     
    more » « less