skip to main content


Title: Simple and Effective Approaches for Uncertainty Prediction in Facial Action Unit Intensity Regression
Knowing how much to trust a prediction is important for many critical applications. We describe two simple approaches to estimate uncertainty in regression prediction tasks and compare their performance and complexity against popular approaches. We operationalize uncertainty in regression as the absolute error between a model's prediction and the ground truth. Our two proposed approaches use a secondary model to predict the uncertainty of a primary predictive model. Our first approach leverages the assumption that similar observations are likely to have similar uncertainty and predicts uncertainty with a non-parametric method. Our second approach trains a secondary model to directly predict the uncertainty of the primary predictive model. Both approaches outperform other established uncertainty estimation approaches on the MNIST, DISFA, and BP4D+ datasets. Furthermore, we observe that approaches that directly predict the uncertainty generally perform better than approaches that indirectly estimate uncertainty.  more » « less
Award ID(s):
1750439 1722822 1734868
NSF-PAR ID:
10169266
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of IEEE International Conference on Automatic Face & Gesture Recognition
Volume:
1
Page Range / eLocation ID:
304-308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rapidly increasing congestion in the low Earth environment makes the modeling of uncertainty in atmospheric drag force a critical task, affecting space situational awareness (SSA) activities like the probability of collision estimation. A key element in atmospheric drag modeling is the assessment of uncertainty in the atmospheric drag coefficient estimate. While atmospheric drag coefficients for space objects with known characteristics can be computed numerically, they suffer from large computational costs for practical applications. In this work, we use cost-effective data-driven stochastic methods for modeling the drag coefficients of objects in the low Earth orbit (LEO) region. The training data is generated using the numerical Test Particle Monte Carlo (TPMC) method. TPMC is simulated with Cercignani–Lampis–Lord (CLL) gas-surface interaction (GSI) model. Mehta et al. [1] use a Gaussian process regression (GPR) model to predict satellite drag coefficient, but the authors did not estimate the predictive uncertainty. The first part of this research extends the work by Mehta et al. [1] by fitting a GPR model to the training data and performing predictive uncertainty estimation. The results of the Gaussian fit are then compared against a deep neural network (DNN) model aided by the Monte Carlo dropout approach. To the best of our knowledge, this is the first study to use the aforementioned stochastic deep learning algorithm to perform predictive uncertainty estimation of the estimated satellite drag coefficient. Apart from the accuracy of the models, we also undertake the task of calibrating the models. Simulations are carried out for a spherical satellite followed by the Champ satellite. Finally, quantification of the effect of drag coefficient uncertainty on orbit prediction is carried out for different solar activity and geomagnetic activity levels. 
    more » « less
  2. Background

    Although conventional prediction models for surgical patients often ignore intraoperative time-series data, deep learning approaches are well-suited to incorporate time-varying and non-linear data with complex interactions. Blood lactate concentration is one important clinical marker that can reflect the adequacy of systemic perfusion during cardiac surgery. During cardiac surgery and cardiopulmonary bypass, minute-level data is available on key parameters that affect perfusion. The goal of this study was to use machine learning and deep learning approaches to predict maximum blood lactate concentrations after cardiac surgery. We hypothesized that models using minute-level intraoperative data as inputs would have the best predictive performance.

    Methods

    Adults who underwent cardiac surgery with cardiopulmonary bypass were eligible. The primary outcome was maximum lactate concentration within 24 h postoperatively. We considered three classes of predictive models, using the performance metric of mean absolute error across testing folds: (1) static models using baseline preoperative variables, (2) augmentation of the static models with intraoperative statistics, and (3) a dynamic approach that integrates preoperative variables with intraoperative time series data.

    Results

    2,187 patients were included. For three models that only used baseline characteristics (linear regression, random forest, artificial neural network) to predict maximum postoperative lactate concentration, the prediction error ranged from a median of 2.52 mmol/L (IQR 2.46, 2.56) to 2.58 mmol/L (IQR 2.54, 2.60). The inclusion of intraoperative summary statistics (including intraoperative lactate concentration) improved model performance, with the prediction error ranging from a median of 2.09 mmol/L (IQR 2.04, 2.14) to 2.12 mmol/L (IQR 2.06, 2.16). For two modelling approaches (recurrent neural network, transformer) that can utilize intraoperative time-series data, the lowest prediction error was obtained with a range of median 1.96 mmol/L (IQR 1.87, 2.05) to 1.97 mmol/L (IQR 1.92, 2.05). Intraoperative lactate concentration was the most important predictive feature based on Shapley additive values. Anemia and weight were also important predictors, but there was heterogeneity in the importance of other features.

    Conclusion

    Postoperative lactate concentrations can be predicted using baseline and intraoperative data with moderate accuracy. These results reflect the value of intraoperative data in the prediction of clinically relevant outcomes to guide perioperative management.

     
    more » « less
  3. Solar flare prediction is a central problem in space weather forecasting and has captivated the attention of a wide spectrum of researchers due to recent advances in both remote sensing as well as machine learning and deep learning approaches. The experimental findings based on both machine and deep learning models reveal significant performance improvements for task specific datasets. Along with building models, the practice of deploying such models to production environments under operational settings is a more complex and often time-consuming process which is often not addressed directly in research settings. We present a set of new heuristic approaches to train and deploy an operational solar flare prediction system for ≥M1.0-class flares with two prediction modes: full-disk and active region-based. In full-disk mode, predictions are performed on full-disk line-of-sight magnetograms using deep learning models whereas in active region-based models, predictions are issued for each active region individually using multivariate time series data instances. The outputs from individual active region forecasts and full-disk predictors are combined to a final full-disk prediction result with a meta-model. We utilized an equal weighted average ensemble of two base learners’ flare probabilities as our baseline meta learner and improved the capabilities of our two base learners by training a logistic regression model. The major findings of this study are: 1) We successfully coupled two heterogeneous flare prediction models trained with different datasets and model architecture to predict a full-disk flare probability for next 24 h, 2) Our proposed ensembling model, i.e., logistic regression, improves on the predictive performance of two base learners and the baseline meta learner measured in terms of two widely used metrics True Skill Statistic (TSS) and Heidke Skill Score (HSS), and 3) Our result analysis suggests that the logistic regression-based ensemble (Meta-FP) improves on the full-disk model (base learner) by ∼9% in terms TSS and ∼10% in terms of HSS. Similarly, it improves on the AR-based model (base learner) by ∼17% and ∼20% in terms of TSS and HSS respectively. Finally, when compared to the baseline meta model, it improves on TSS by ∼10% and HSS by ∼15%. 
    more » « less
  4. Abstract

    Machine learning (ML) has been applied to space weather problems with increasing frequency in recent years, driven by an influx of in-situ measurements and a desire to improve modeling and forecasting capabilities throughout the field. Space weather originates from solar perturbations and is comprised of the resulting complex variations they cause within the numerous systems between the Sun and Earth. These systems are often tightly coupled and not well understood. This creates a need for skillful models with knowledge about the confidence of their predictions. One example of such a dynamical system highly impacted by space weather is the thermosphere, the neutral region of Earth’s upper atmosphere. Our inability to forecast it has severe repercussions in the context of satellite drag and computation of probability of collision between two space objects in low Earth orbit (LEO) for decision making in space operations. Even with (assumed) perfect forecast of model drivers, our incomplete knowledge of the system results in often inaccurate thermospheric neutral mass density predictions. Continuing efforts are being made to improve model accuracy, but density models rarely provide estimates of confidence in predictions. In this work, we propose two techniques to develop nonlinear ML regression models to predict thermospheric density while providing robust and reliable uncertainty estimates: Monte Carlo (MC) dropout and direct prediction of the probability distribution, both using the negative logarithm of predictive density (NLPD) loss function. We show the performance capabilities for models trained on both local and global datasets. We show that the NLPD loss provides similar results for both techniques but the direct probability distribution prediction method has a much lower computational cost. For the global model regressed on the Space Environment Technologies High Accuracy Satellite Drag Model (HASDM) density database, we achieve errors of approximately 11% on independent test data with well-calibrated uncertainty estimates. Using an in-situ CHAllenging Minisatellite Payload (CHAMP) density dataset, models developed using both techniques provide test error on the order of 13%. The CHAMP models—on validation and test data—are within 2% of perfect calibration for the twenty prediction intervals tested. We show that this model can also be used to obtain global density predictions with uncertainties at a given epoch.

     
    more » « less
  5. null (Ed.)
    Subseasonal climate forecasting is the task of predicting climate variables, such as temperature and precipitation, in a two-week to two-month time horizon. The primary predictors for such prediction problem are spatio-temporal satellite and ground measurements of a variety of climate variables in the atmosphere, ocean, and land, which however have rather limited predictive signal at the subseasonal time horizon. We propose a carefully constructed spatial hierarchical Bayesian regression model that makes use of the inherent spatial structure of the subseasonal climate prediction task. We use our Bayesian model to then derive decision-theoretically optimal point estimates with respect to various performance measures of interest to climate science. As we show, our approach handily improves on various off-the-shelf ML baselines. Since our method is based on a Bayesian frame- work, we are also able to quantify the uncertainty in our predictions, which is particularly crucial for difficult tasks such as the subseasonal prediction, where we expect any model to have considerable uncertainty at different test locations under differ- ent scenarios. 
    more » « less