skip to main content

Title: Simple and Effective Approaches for Uncertainty Prediction in Facial Action Unit Intensity Regression
Knowing how much to trust a prediction is important for many critical applications. We describe two simple approaches to estimate uncertainty in regression prediction tasks and compare their performance and complexity against popular approaches. We operationalize uncertainty in regression as the absolute error between a model's prediction and the ground truth. Our two proposed approaches use a secondary model to predict the uncertainty of a primary predictive model. Our first approach leverages the assumption that similar observations are likely to have similar uncertainty and predicts uncertainty with a non-parametric method. Our second approach trains a secondary model to directly predict the uncertainty of the primary predictive model. Both approaches outperform other established uncertainty estimation approaches on the MNIST, DISFA, and BP4D+ datasets. Furthermore, we observe that approaches that directly predict the uncertainty generally perform better than approaches that indirectly estimate uncertainty.
Award ID(s):
1750439 1722822 1734868
Publication Date:
Journal Name:
Proceedings of IEEE International Conference on Automatic Face & Gesture Recognition
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. The rapidly increasing congestion in the low Earth environment makes the modeling of uncertainty in atmospheric drag force a critical task, affecting space situational awareness (SSA) activities like the probability of collision estimation. A key element in atmospheric drag modeling is the assessment of uncertainty in the atmospheric drag coefficient estimate. While atmospheric drag coefficients for space objects with known characteristics can be computed numerically, they suffer from large computational costs for practical applications. In this work, we use cost-effective data-driven stochastic methods for modeling the drag coefficients of objects in the low Earth orbit (LEO) region. The training data is generated using the numerical Test Particle Monte Carlo (TPMC) method. TPMC is simulated with Cercignani–Lampis–Lord (CLL) gas-surface interaction (GSI) model. Mehta et al. [1] use a Gaussian process regression (GPR) model to predict satellite drag coefficient, but the authors did not estimate the predictive uncertainty. The first part of this research extends the work by Mehta et al. [1] by fitting a GPR model to the training data and performing predictive uncertainty estimation. The results of the Gaussian fit are then compared against a deep neural network (DNN) model aided by the Monte Carlo dropout approach. To the bestmore »of our knowledge, this is the first study to use the aforementioned stochastic deep learning algorithm to perform predictive uncertainty estimation of the estimated satellite drag coefficient. Apart from the accuracy of the models, we also undertake the task of calibrating the models. Simulations are carried out for a spherical satellite followed by the Champ satellite. Finally, quantification of the effect of drag coefficient uncertainty on orbit prediction is carried out for different solar activity and geomagnetic activity levels.« less
  2. Abstract

    Machine learning (ML) has been applied to space weather problems with increasing frequency in recent years, driven by an influx of in-situ measurements and a desire to improve modeling and forecasting capabilities throughout the field. Space weather originates from solar perturbations and is comprised of the resulting complex variations they cause within the numerous systems between the Sun and Earth. These systems are often tightly coupled and not well understood. This creates a need for skillful models with knowledge about the confidence of their predictions. One example of such a dynamical system highly impacted by space weather is the thermosphere, the neutral region of Earth’s upper atmosphere. Our inability to forecast it has severe repercussions in the context of satellite drag and computation of probability of collision between two space objects in low Earth orbit (LEO) for decision making in space operations. Even with (assumed) perfect forecast of model drivers, our incomplete knowledge of the system results in often inaccurate thermospheric neutral mass density predictions. Continuing efforts are being made to improve model accuracy, but density models rarely provide estimates of confidence in predictions. In this work, we propose two techniques to develop nonlinear ML regression models to predictmore »thermospheric density while providing robust and reliable uncertainty estimates: Monte Carlo (MC) dropout and direct prediction of the probability distribution, both using the negative logarithm of predictive density (NLPD) loss function. We show the performance capabilities for models trained on both local and global datasets. We show that the NLPD loss provides similar results for both techniques but the direct probability distribution prediction method has a much lower computational cost. For the global model regressed on the Space Environment Technologies High Accuracy Satellite Drag Model (HASDM) density database, we achieve errors of approximately 11% on independent test data with well-calibrated uncertainty estimates. Using an in-situ CHAllenging Minisatellite Payload (CHAMP) density dataset, models developed using both techniques provide test error on the order of 13%. The CHAMP models—on validation and test data—are within 2% of perfect calibration for the twenty prediction intervals tested. We show that this model can also be used to obtain global density predictions with uncertainties at a given epoch.

    « less
  3. Subseasonal climate forecasting is the task of predicting climate variables, such as temperature and precipitation, in a two-week to two-month time horizon. The primary predictors for such prediction problem are spatio-temporal satellite and ground measurements of a variety of climate variables in the atmosphere, ocean, and land, which however have rather limited predictive signal at the subseasonal time horizon. We propose a carefully constructed spatial hierarchical Bayesian regression model that makes use of the inherent spatial structure of the subseasonal climate prediction task. We use our Bayesian model to then derive decision-theoretically optimal point estimates with respect to various performance measures of interest to climate science. As we show, our approach handily improves on various off-the-shelf ML baselines. Since our method is based on a Bayesian frame- work, we are also able to quantify the uncertainty in our predictions, which is particularly crucial for difficult tasks such as the subseasonal prediction, where we expect any model to have considerable uncertainty at different test locations under differ- ent scenarios.
  4. Abstract. Monte Carlo (MC) methods have been widely used in uncertainty analysis and parameter identification for hydrological models. The main challenge with these approaches is, however, the prohibitive number of model runs required to acquire an adequate sample size, which may take from days to months – especially when the simulations are run in distributed mode. In the past, emulators have been used to minimize the computational burden of the MC simulation through direct estimation of the residual-based response surfaces. Here, we apply emulators of an MC simulation in parameter identification for a distributed conceptual hydrological model using two likelihood measures, i.e. the absolute bias of model predictions (Score) and another based on the time-relaxed limits of acceptability concept (pLoA). Three machine-learning models (MLMs) were built using model parameter sets and response surfaces with a limited number of model realizations (4000). The developed MLMs were applied to predict pLoA and Score for a large set of model parameters (95 000). The behavioural parameter sets were identified using a time-relaxed limits of acceptability approach, based on the predicted pLoA values, and applied to estimate the quantile streamflow predictions weighted by their respective Score. The three MLMs were able to adequately mimic themore »response surfaces directly estimated from MC simulations with an R2 value of 0.7 to 0.92. Similarly, the models identified using the coupled machine-learning (ML) emulators and limits of acceptability approach have performed very well in reproducing the median streamflow prediction during the calibration and validation periods, with an average Nash–Sutcliffe efficiency value of 0.89 and 0.83, respectively.« less
  5. Abstract

    Photometric pipelines struggle to estimate both the flux and flux uncertainty for stars in the presence of structured backgrounds such as filaments or clouds. However, it is exactly stars in these complex regions that are critical to understanding star formation and the structure of the interstellar medium. We develop a method, similar to Gaussian process regression, which we term local pixel-wise infilling (LPI). Using a local covariance estimate, we predict the background behind each star and the uncertainty of that prediction in order to improve estimates of flux and flux uncertainty. We show the validity of our model on synthetic data and real dust fields. We further demonstrate that the method is stable even in the crowded field limit. While we focus on optical-IR photometry, this method is not restricted to those wavelengths. We apply this technique to the 34 billion detections in the second data release of the Dark Energy Camera Plane Survey. In addition to removing many >3σoutliers and improving uncertainty estimates by a factor of ∼2–3 on nebulous fields, we also show that our method is well behaved on uncrowded fields. The entirely post-processing nature of our implementation of LPI photometry allows it to easily improvemore »the flux and flux uncertainty estimates of past as well as future surveys.

    « less