skip to main content


Title: Constraining disk evolution prescriptions of planet population synthesis models with observed disk masses and accretion rates
While planets are commonly discovered around main-sequence stars, the processes leading to their formation are still far from being understood. Current planet population synthesis models, which aim to describe the planet formation process from the protoplanetary disk phase to the time exoplanets are observed, rely on prescriptions for the underlying properties of protoplanetary disks where planets form and evolve. The recent development in measuring disk masses and disk-star interaction properties, i.e., mass accretion rates, in large samples of young stellar objects demand a more careful comparison between the models and the data. We performed an initial critical assessment of the assumptions made by planet synthesis population models by looking at the relation between mass accretion rates and disk masses in the models and in the currently available data. We find that the currently used disk models predict mass accretion rate in line with what is measured, but with a much lower spread of values than observed. This difference is mainly because the models have a smaller spread of viscous timescales than what is needed to reproduce the observations. We also find an overabundance of weakly accreting disks in the models where giant planets have formed with respect to observations of typical disks. We suggest that either fewer giant planets have formed in reality or that the prescription for planet accretion predicts accretion on the planets that is too high. Finally, the comparison of the properties of transition disks with large cavities confirms that in many of these objects the observed accretion rates are higher than those predicted by the models. On the other hand, PDS70, a transition disk with two detected giant planets in the cavity, shows mass accretion rates well in line with model predictions.  more » « less
Award ID(s):
1907486
NSF-PAR ID:
10170414
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
631
ISSN:
0004-6361
Page Range / eLocation ID:
L2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Shu-ichiro Inutsuka ; Yuri Aikawa ; Takayuki Muto ; Kengo Tomida ; Motohide Tamura (Ed.)
    Since Protostars and Planets VI (PPVI), our knowledge of the global properties of protoplanetary and debris disks, as well as of young stars, has dramatically improved. At the time of PPVI, mm-observations and optical to near-infrared spectroscopic surveys were largely limited to the Taurus star-forming region, especially of its most massive disk and stellar population. Now, near-complete surveys of multiple star-forming regions cover both spectroscopy of young stars and mm interferometry of their protoplanetary disks. This provides an unprecedented statistical sample of stellar masses and mass accretion rates, as well as disk masses and radii, for almost 1000 young stellar objects within 300 pc from us, while also sampling different evolutionary stages, ages, and environments. At the same time, surveys of debris disks are revealing the bulk properties of this class of more evolved objects. This chapter reviews the statistics of these measured global star and disk properties and discusses their constraints on theoretical models describing global disk evolution. Our comparisons of observations to theoretical model predictions extends beyond the traditional viscous evolution framework to include analytical descriptions of magnetic wind effects. Finally, we discuss how recent observational results can provide a framework for models of planet population synthesis and planet formation. 
    more » « less
  2. Abstract The observed correlation between outer giant planets and inner super-Earths is emerging as an important constraint on planet formation theories. In this study, we focus on Kepler-167, which is currently the only system known to contain both inner transiting super-Earths and a confirmed outer transiting gas giant companion beyond 1 au. Using long-term radial velocity monitoring, we measure the mass of the gas giant Kepler-167e ( P = 1071 days) to be 1.01 − 0.15 + 0.16 M J , thus confirming it as a Jupiter analog. We refit the Kepler photometry to obtain updated radii for all four planets. Using a planetary structure model, we estimate that Kepler-167e contains 66 ± 19 M ⊕ of solids and is significantly enriched in metals relative to its solar-metallicity host star. We use these new constraints to explore the broader question of how systems like Kepler-167 form in the pebble accretion framework for giant planet core formation. We utilize simple disk evolution models to demonstrate that more massive and metal-rich disks, which are the most favorable sites for giant planet formation, can also deliver enough solids to the inner disk to form systems of super-Earths. We use these same models to constrain the nature of Kepler-167's protoplanetary disk and find that it likely contained ≳300 M ⊕ of dust and was ≳40 au in size. These values overlap with the upper end of the observed dust mass and size distributions of Class 0 and I disks and are also consistent with the observed occurrence rate of Jupiter analogs around Sun-like stars. 
    more » « less
  3. Abstract Giant planets have been discovered at large separations from the central star. Moreover, a striking number of young circumstellar disks have gas and/or dust gaps at large orbital separations, potentially driven by embedded planetary objects. To form massive planets at large orbital separations through core accretion within the disk lifetime, however, an early solid body to seed pebble and gas accretion is desirable. Young protoplanetary disks are likely self-gravitating, and these gravitoturbulent disks may efficiently concentrate solid material at the midplane driven by spiral waves. We run 3D local hydrodynamical simulations of gravitoturbulent disks with Lagrangian dust particles to determine whether particle and gas self-gravity can lead to the formation of dense solid bodies, seeding later planet formation. When self-gravity between dust particles is included, solids of size St = 0.1–1 concentrate within the gravitoturbulent spiral features and collapse under their own self-gravity into dense clumps up to several M ⊕ in mass at wide orbits. Simulations with dust that drift most efficiently, St = 1, form the most massive clouds of particles, while simulations with smaller dust particles, St = 0.1, have clumps with masses an order of magnitude lower. When the effect of dust backreaction onto the gas is included, dust clumps become smaller by a factor of a few but more numerous. The existence of large solid bodies at an early stage of the disk can accelerate the planet formation process, particularly at wide orbital separations, and potentially explain planets distant from the central stars and young protoplanetary disks with substructures. 
    more » « less
  4. Abstract

    Some evolved binaries, namely post–asymptotic giant branch (AGB) binaries, are surrounded by stable and massive circumbinary disks similar to protoplanetary disks found around young stars. Around 10% of these disks are transition disks: they have a large inner cavity in the dust. Previous interferometric measurements and modeling have ruled out these cavities being formed by dust sublimation and suggested that they are due to massive circumbinary planets that trap dust in the disk and produce the observed depletion of refractory elements on the surfaces of the post-AGB stars. In this study, we test an alternative scenario in which the large cavities could be due to dynamical truncation from the inner binary. We performed near-infrared interferometric observations with the CHARA Array on the archetype of such a transition disk around a post-AGB binary: AC Her. We detect the companion at ten epochs over 4 yr and determine the three-dimensional orbit using these astrometric measurements in combination with a radial velocity time series. This is the first astrometric orbit constructed for a post-AGB binary system. We derive the best-fit orbit with a semimajor axis of 2.01 ± 0.01 mas (2.83 ± 0.08 au), inclination (142.9 ± 1.1)°, and longitude of the ascending node (155.1 ± 1.8)°. We find that the theoretical dynamical truncation and dust sublimation radii are at least ∼3× smaller than the observed inner disk radius (∼21.5 mas or 30 au). This strengthens the hypothesis that the origin of the cavity is due to the presence of a circumbinary planet.

     
    more » « less
  5. Abstract

    Gas mass is a fundamental quantity of protoplanetary disks that directly relates to their ability to form planets. Because we are unable to observe the bulk H2content of disks directly, we rely on indirect tracers to provide quantitative mass estimates. Current estimates for the gas masses of the observed disk population in the Lupus star-forming region are based on measurements of isotopologues of CO. However, without additional constraints, the degeneracy between H2mass and the elemental composition of the gas leads to large uncertainties in such estimates. Here, we explore the gas compositions of seven disks from the Lupus sample representing a range of CO-to-dust ratios. With Band 6 and 7 ALMA observations, we measure line emission for HCO+, HCN, and N2H+. We find a tentative correlation among the line fluxes for these three molecular species across the sample, but no correlation with13CO or submillimeter continuum fluxes. For the three disks where N2H+is detected, we find that a combination of high disk gas masses and subinterstellar C/H and O/H are needed to reproduce the observed values. We find increases of ∼10–100× previous mass estimates are required to match the observed line fluxes. This work highlights how multimolecular studies are essential for constraining the physical and chemical properties of the gas in populations of protoplanetary disks, and that CO isotopologues alone are not sufficient for determining the mass of many observed disks.

     
    more » « less