Abstract Conjugated polymers have gained momentum as serious contenders for next‐generation flexible electronics, but their susceptibility to water represents a major problem. Atmospheric water is ubiquitous and its inadvertent diffusion into polymeric devices generates charge carrier traps, reducing their performance and stability. A good understanding of the physical processes associated with the presence of water is therefore necessary in order to be able to suppress the related trapping events and enable stable, high‐performance devices. Here, evidence is shown that water introduces traps in the bandgap of organic semiconductors and the impact of these traps on the electrical properties of polymer organic field‐effect transistors (OFETs) based on indacenodithiophene‐co‐benzothiadiazole (IDT‐BT) is investigated. Monitoring device parameters and the trap density of states (t‐DOS) during moisture extrication reveals the existence of two types of water‐related traps: shallow traps originating from water inhabiting the voids of the polymer film and deeper traps arising from chemisorbed water present at the dielectric/polymer interface. A trap passivation method based on flame‐annealing is introduced to eliminate the interfacial traps. As a result, stable OFETs, with threshold voltage shifts less than ΔVth = −0.3 V and constant mobilities (<10% variation) after three months of storage, are fabricated.
more »
« less
Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices
The weak intermolecular interactions inherent in organic semiconductors make them susceptible to defect formation, resulting in localized states in the band-gap that can trap charge carriers at different timescales. Charge carrier trapping is thus ubiquitous in organic semiconductors and can have a profound impact on their performance when incorporated into optoelectronic devices. This review provides a comprehensive overview on the phenomenon of charge carrier trapping in organic semiconductors, with emphasis on the underlying physical processes and its impact on device operation. We first define the concept of charge carrier trap, then outline and categorize different origins of traps. Next, we discuss their impact on the mechanism of charge transport and the performance of electronic devices. Progress in the filed in terms of characterization and detection of charge carrier traps is reviewed together with insights on future direction of research. Finally, a discussion on the exploitation of traps in memory and sensing applications is provided.
more »
« less
- PAR ID:
- 10171210
- Date Published:
- Journal Name:
- Journal of Materials Chemistry C
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2050-7526
- Page Range / eLocation ID:
- 759 to 787
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The optical trapping of colloidal semiconductor nanomaterials would enable single-particle photophysics, sensing, and chemical measurements. Yet, the trapping of these materials has lagged behind other dielectric and metallic materials due to the prevalence of aqueous solvents in optical trapping experiments, which are not suitable for many semiconductors. Here, we trap particles in multiple solvents and study the impact of nonaqueous solvents on optical trapping dynamics. These experiments and calculations show that there exists an optimal refractive index of the media that maximizes trapping strength and for colloidal nanomaterials a universal relationship to enhance trap strength. We also find that viscosity has no impact on the trap strength and changes only the residence times of particles in unstable traps. Trap stiffness measurements also show that photothermal effects, which are enhanced in nonaqueous solvents, can lead to convection, which modifies trap stiffnesses. These results provide an understanding of how solvent selection impacts trapping dynamics and general design rules for experiments in nonaqueous solvents, opening the door for improved sensing, chemistry, and photophysics studies using colloidal micro- and nanomaterials.more » « less
-
Mixtures of layered perovskite quantum wells with different sizes form prototypical light-harvesting antenna structures in solution-processed films. Gradients in the bandgaps and energy levels are established by concentrating the smallest and largest quantum wells near opposing electrodes in photovoltaic devices. Whereas short-range energy and charge carrier funneling behaviors have been observed in layered perovskites, our recent work suggests that such light-harvesting processes do not assist long-range charge transport due to carrier trapping at interfaces between quantum wells and interstitial organic spacer molecules. Here, we apply a two-pulse time-of-flight technique to a family of layered perovskite systems to explore the effects that interstitial organic molecules have on charge carrier dynamics. In these experiments, the first laser pulse initiates carrier drift within the active layer of a photovoltaic device, whereas the second pulse probes the transient concentrations of photoexcited carriers as they approach the electrodes. The instantaneous drift velocities determined with this method suggest that the rates of trap-induced carrier deceleration increase with the concentrations of organic spacer cations. Overall, our experimental results and model calculations suggest that the layered perovskite device efficiencies primarily reflect the dynamics of carrier trapping at interfaces between quantum wells and interstitial organic phases.more » « less
-
Abstract Utilizing the intrinsic mobility–strain relationship in semiconductors is critical for enabling strain engineering applications in high‐performance flexible electronics. Here, measurements of Hall effect and Raman spectra of an organic semiconductor as a function of uniaxial mechanical strain are reported. This study reveals a very strong, anisotropic, and reversible modulation of the intrinsic (trap‐free) charge carrier mobility of single‐crystal rubrene transistors with strain, showing that the effective mobility of organic circuits can be enhanced by up to 100% with only 1% of compressive strain. Consistently, Raman spectroscopy reveals a systematic shift of the low‐frequency Raman modes of rubrene to higher (lower) frequencies with compressive (tensile) strain, which is indicative of a reduction (enhancement) of thermal molecular disorder in the crystal with strain. This study lays the foundation of the strain engineering in organic electronics and advances the knowledge of the relationship between the carrier mobility, low‐frequency vibrational modes, strain, and molecular disorder in organic semiconductors.more » « less
-
Organic solar cells (OSCs) using non-fullerene acceptors (NFAs) afford exceptional photovoltaic performance metrics, however, their stability remains a significant challenge. Existing OSC stability studies focus on understanding degradation rate-performance relationships, improving interfacial layers, and suppressing degradative chemical reaction pathways. Nevertheless, there is a knowledge gap concerning how such degradation affects crystal structure, electronic states, and recombination dynamics that ultimately impact NFA performance. Here we seek a quantitative relationship between OSC metrics and blend morphology, trap density of states, charge carrier mobility, and recombination processes during the UV-light-induced degradation of PBDB-TF:Y6 inverted solar cells as the PCE (power conversion efficiency) falls from 17.3 to 5.0%. Temperature-dependent electrical and impedance measurements reveal deep traps at 0.48 eV below the conduction band that are unaffected by Y6 degradation, and shallow traps at 0.15 eV below the conduction band that undergo a three-fold density of states increase at the PCE degradation onset. Computational analysis correlates vinyl oxidation with a new trap state at 0.25 eV below the conduction band, likely involving charge transfer from the UV-absorbing ZnO electron transport layer. In-situ integrated photocurrent analysis and transient absorption spectroscopy reveal that these traps lower electron mobility and increase recombination rates during degradation. Grazing-incidence wide-angle x-ray scattering and computational analysis reveal that the degraded Y6 crystallite morphology is largely preserved but that <1% of degraded Y6 molecules cause OSC PCE performance degradation by ≈50%. Together the detailed electrical, impedance, morphological, ultrafast spectroscopic, matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) spectroscopy, and computational data reveal that the trap state energies and densities accompanying Y6 vinyl oxidation are primarily responsible for the PCE degradation in these operating NFA-OSCs.more » « less
An official website of the United States government

