skip to main content


Title: Miniature High-Voltage DC-DC Power Converters for Space and Micro-Robotic Applications
We develop a small and lightweight high-voltage high-gain power converter for applications where weight and size are premium. By driving a Dickson and Cockcroft-Walton voltage multiplier with a megahertz-frequency class-E inverter, we implement two converters, one that achieves 40 V-to-2 kV conversion with 16 cm3 box volume and the other that achieves 3.7 V-to-2.9 kV conversion with 0.2 cm3 box volume and 0.49 g weight. Presented converters achieve comparable or better power density and specific power to those of commercial high-voltage power supplies.  more » « less
Award ID(s):
1808489
NSF-PAR ID:
10171610
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE Energy Conversion Congress and Exposition (ECCE)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents the design of a compact 45 V-to-54 kV dc-dc converter for high-energy beam applications with the focus on X-ray generation. We describe key design choices for a high power density including a modular structure, high-frequency switching, planar transformers and Dickson topology. High-voltage insulation and thermal management are also described in detail. The experimental data with a 5 kV single module and a 10-module 54 kV converter indicate that the proposed structure can generate high dc voltage while achieving a several times higher power density compared to commercial high-voltage power supplies. 
    more » « less
  2. null (Ed.)
    Efficient high-conversion-ratio power delivery is needed for many portable computing applications which require sub-volt supply rails but operate from batteries or USB power sources. In such applications, the power management unit should have a small volume, area, and height while providing fast transient response. Past work has shown favorable performance of hybrid switched-capacitor (SC) converters to reduce the size of needed inductor(s), which can soft-charge high-density SC networks while supporting efficient voltage regulation [1-5]. However, the hybrid approach has its own challenges including balancing the voltage of the flying capacitor and achieving safe but fast startup. Rapid supply transients, including startup, can cause voltage stress on power switches if flying capacitors are not quickly regulated. Past approaches such as precharge networks [3] or fast balancing control [5] have startup times that are on the order of milliseconds. This paper presents a two-stage cascaded hybrid SC converter that features a fast transient response with automatic flying capacitor balancing for low-voltage applications (i.e., 5V:0.4 to 1.2V from a USB interface). The converter is nearly standalone and all gate drive supplies are generated internally. Measured results show a peak efficiency of 96.9%, <; 36mV under/overshoot for 1A/μs load transients, and self-startup time on the order of 10μs (over 100× faster than previous works). 
    more » « less
  3. Summary

    Inductive power transfer has become an emerging technology for its significant benefits in many applications, including mobile phones, laptops, electric vehicles, implanted bio‐sensors, and internet of things (IoT) devices. In modern applications, a direct current–direct current (DC–DC) converter is one of the essential components to regulate the output supply voltage for achieving the desired characteristics, that is, steady voltage with lower peak ripples. This paper presents a switched‐capacitor (SC) DC–DC converter using complementary architecture to provide a regulated DC voltage with an increased dynamic response. The proposed topology enhances the converter efficiency by decreasing the equivalent output resistance to half by connecting two symmetric SC single ladder converters. The proposed converter is designed using the standard 130‐nm BiCMOS process. The results show that the proposed architecture produces 327‐mV DC output with a rise time of 60.1 ns and consumes 3.449‐nW power for 1.0‐V DC supply. The output settling time is 43.6% lower than the single‐stage SC DC–DC converter with an input frequency of 200 MHz. The comparison results show that the proposed converter has a higher power conversion efficiency of 93.87%and a lower power density of 0.57 mW/mm2compared to the existing works.

     
    more » « less
  4. null (Ed.)
    This paper presents an analytical model for calculating the output voltage and the power efficiency of multi-stage multi-output (MSMO) DC-DC converters (DDC) that use charge pump cells for boosting the voltage. Various cases such as multi-output current consumption and its effects on the output voltage and the power efficiency are studied. Based on the model, a tapered design approach is proposed that can bolster the power efficiency and lower the output voltage drop of MSMO DDCs. Moreover, a charge-pump-based DDC is introduced and designed to verify the proposed model. Simulation results using a standard high-voltage 180-nm CMOS technology affirms the accuracy of the presented model. 
    more » « less
  5. This paper describes the study of a topology of modular multilevel converters for integrating battery energy storage into a medium (13.8 kV) distribution system. The main benefit of this topology is to remove the need for a bulk 60 Hz transformer that is normally used to step up the output of a voltage source inverter to the medium voltage level. A SiC-based power electronics interface presented in this paper provides an efficient solution without the large and costly transformer. Using medium voltage SiC devices (≥ 10 kV SiC MOSFETs), with their high breakdown voltage, enables the system to meet and withstand medium voltage application, using a minimized number of cascaded modules. This SiC-based power electronics interface significantly reduces the complexity usually faced when Si devices are used directly in medium voltage applications. The voltage and state of charge balancing control for battery modules is also simplified and performs well. The simulation and experimental results, performed on a low-voltage prototype, verify the proposed topology that is presented in this paper. 
    more » « less