Abstract The variability of Arctic sea ice extent (SIE) on interannual and multidecadal time scales is examined in 29 models with historical forcing participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6) and in twentieth-century sea ice reconstructions. Results show that during the historical period with low external forcing (1850–1919), CMIP6 models display relatively good agreement in their representation of interannual sea ice variability (IVSIE) but exhibit pronounced intermodel spread in multidecadal sea ice variability (MVSIE), which is overestimated with respect to sea ice reconstructions and is dominated by model uncertainty in sea ice simulation in the subpolar North Atlantic. We find that this is associated with differences in models’ sensitivity to Northern Hemispheric sea surface temperatures (SSTs). Additionally, we show that while CMIP6 models are generally capable of simulating multidecadal changes in Arctic sea ice from the mid-twentieth century to present day, they tend to underestimate the observed sea ice decline during the early twentieth-century warming (ETCW; 1915–45). These results suggest the need for an improved characterization of the sea ice response to multidecadal climate variability in order to address the sources of model bias and reduce the uncertainty in future projections arising from intermodel spread. Significance StatementThe credibility of Arctic sea ice predictions depends on whether climate models are capable of reproducing changes in the past climate, including patterns of sea ice variability which can mask or amplify the response to global warming. This study aims to better understand how latest-generation global climate models simulate interannual and multidecadal variability of Arctic sea ice relative to available observations. We find that models differ in their representation of multidecadal sea ice variability, which is overall larger than in observations. Additionally, models underestimate the sea ice decline during the period of observed warming between 1915 and 1945. Our results suggest that, to achieve better predictions of Arctic sea ice, the realism of low-frequency sea ice variability in models should be improved. 
                        more » 
                        « less   
                    
                            
                            Arctic Sea Ice Volume Variability over 1901–2010: A Model-Based Reconstruction
                        
                    
    
            Abstract PIOMAS-20C, an Arctic sea ice reconstruction for 1901–2010, is produced by forcing the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) with ERA-20C atmospheric data. ERA-20C performance over Arctic sea ice is assessed by comparisons with measurements and data from other reanalyses. ERA-20C performs similarly with respect to the annual cycle of downwelling radiation, air temperature, and wind speed compared to reanalyses with more extensive data assimilation such as ERA-Interim and MERRA. PIOMAS-20C sea ice thickness and volume are then compared with in situ and aircraft remote sensing observations for the period of ~1950–2010. Error statistics are similar to those for PIOMAS. We compare the magnitude and patterns of sea ice variability between the first half of the twentieth century (1901–40) and the more recent period (1980–2010), both marked by sea ice decline in the Arctic. The first period contains the so-called early-twentieth-century warming (ETCW; ~1920–40) during which the Atlantic sector saw a significant decline in sea ice volume, but the Pacific sector did not. The sea ice decline over the 1979–2010 period is pan-Arctic and 6 times larger than the net decline during the 1901–40 period. Sea ice volume trends reconstructed solely from surface temperature anomalies are smaller than PIOMAS-20C, suggesting that mechanisms other than warming, such as changes in ice motion and deformation, played a significant role in determining sea ice volume trends during both periods. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1744587
- PAR ID:
- 10171941
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 32
- Issue:
- 15
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 4731 to 4752
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Assessing the role of anthropogenic warming from temporally inhomogeneous historical data in the presence of large natural variability is difficult and has caused conflicting conclusions on detection and attribution of tropical cyclone (TC) trends. Here, using a reconstructed long-term proxy of annual TC numbers together with high-resolution climate model experiments, we show robust declining trends in the annual number of TCs at global and regional scales during the twentieth century. The Twentieth Century Reanalysis (20CR) dataset is used for reconstruction because, compared with other reanalyses, it assimilates only sea-level pressure fields rather than utilize all available observations in the troposphere, making it less sensitive to temporal inhomogeneities in the observations. It can also capture TC signatures from the pre-satellite era reasonably well. The declining trends found are consistent with the twentieth century weakening of the Hadley and Walker circulations, which make conditions for TC formation less favourable.more » « less
- 
            Abstract Arctic Ocean warming and sea ice loss are closely linked to increased ocean heat transport (OHT) into the Arctic and changes in surface heat fluxes. To quantitatively assess their respective roles, we use the 100-member Community Earth System Model, version 2 (CESM2), Large Ensemble over the 1920–2100 period. We first examine the Arctic Ocean warming in a heat budget framework by calculating the contributions from heat exchanges with atmosphere and sea ice and OHT across the Arctic Ocean gateways. Then we quantify how much anomalous heat from the ocean directly translates to sea ice loss and how much is lost to the atmosphere. We find that Arctic Ocean warming is driven primarily by increased OHT through the Barents Sea Opening, with additional contributions from the Fram Strait and Bering Strait OHTs. These OHT changes are driven mainly by warmer inflowing water rather than changes in volume transports across the gateways. The Arctic Ocean warming driven by OHT is partially damped by increased heat loss through the sea surface. Although absorbed shortwave radiation increases due to reduced surface albedo, this increase is compensated by increasing upwelling longwave radiation and latent heat loss. We also explicitly calculate the contributions of ocean–ice and atmosphere–ice heat fluxes to sea ice heat budget changes. Throughout the entire twentieth century as well as the early twenty-first century, the atmosphere is the main contributor to ice heat gain in summer, though the ocean’s role is not negligible. Over time, the ocean progressively becomes the main heat source for the ice as the ocean warms. Significance StatementArctic Ocean warming and sea ice loss are closely linked to increased ocean heat transport (OHT) into the Arctic and changes in surface heat fluxes. Here we use 100 simulations from the same climate model to analyze future warming and sea ice loss. We find that Arctic Ocean warming is primarily driven by increased OHT through the Barents Sea Opening, though the Fram and Bering Straits are also important. This increased OHT is primarily due to warmer inflowing water rather than changing ocean currents. This ocean heat gain is partially compensated by heat loss through the sea surface. During the twentieth century and early twenty-first century, sea ice loss is mainly linked to heat transferred from the atmosphere; however, over time, the ocean progressively becomes the most important contributor.more » « less
- 
            Abstract Much is still unknown about the growth and physiological responses of trees to global change at the northern treeline. We combined tree‐ring width data with century‐long stable carbon and oxygen isotope records to investigate growth and physiological responses of white spruce at two treeline sites in the Canadian Arctic to concurrent increases in temperature, atmospheric CO2concentration (ca), and decline in sea ice extent over the past century. The tree‐ring records were assessed during three periods with contrasting climatic conditions: (a) the early 20th century warming, (b) the 1940–1970 cooling period, and (c) the anthropogenic late 20th century warming period. We found opposing growth trends between the two sites, but similar carbon isotope discrimination (Δ13C) and intrinsic water‐use efficiency (iWUE) trajectories. While tree growth (defined as basal area increment) increased at the site nearer to the Arctic Ocean during the 20th century following the rise in temperature and sea ice loss, growth declined after 1950 at the more interior site. At both sites, Δ13C slightly increased over these periods. However, trees showed a nonlinear response to increasedca, shifting after 1970 from a passive stomatal response (i.e., no changes iniWUE) to an active response (i.e., a moderate ∼12% increase iniWUE). Further, our isotope‐based findings do not support the idea that temperature‐induced drought stress caused the divergent growth trends at our treeline sites. This study thus highlights nonlinear and complex physiological and growth adjustments to concomitant changes in temperature, sea ice extent, andcaover the last century at the northern treeline.more » « less
- 
            Abstract Over the past decades, Arctic climate has exhibited significant changes characterized by strong Pan-Arctic warming and a large scale wind shift trending toward an anticyclonic anomaly centered over Greenland and the Arctic ocean. Recent work has suggested that this wind change is able to warm the Arctic atmosphere and melt sea ice through dynamical-driven warming, moistening and ice drift effects. However, previous examination of this linkage lacks a capability to fully consider the complex nature of the sea ice response to the wind change. In this study, we perform a more rigorous test of this idea by using a coupled high-resolution modelling framework with observed winds nudged over the Arctic that allows for a comparison of these wind-induced effects with observations and simulated effects forced by anthropogenic forcing. Our nudging simulation can well capture observed variability of atmospheric temperature, sea ice and the radiation balance during the Arctic summer and appears to simulate around 30% of Arctic warming and sea ice melting over the whole period (1979-2020) and more than 50% over the period 2000 to 2012, which is the fastest Arctic warming decade in the satellite era. In particular, in the summer of 2020, a similar wind pattern reemerged to induce the second-lowest sea ice extent since 1979, suggesting that large scale wind changes in the Arctic is essential in shaping Arctic climate on interannual and interdecadal time scales and may be critical to determine Arctic climate variability in the coming decades.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    