skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Combining Renewable Solar and Open Air Cooling for Greening Internet-Scale Distributed Networks
The widespread adoption and popularity of Internet-scale Distributed Networks (IDNs) has led to an explosive growth in the infrastructure of these networks. Unfortunately, this growth has also led to a rapid increase in energy consumption with its accompanying environmental impact. Therefore, energy efficiency is a key consideration in operating and designing these power-hungry networks. In this paper, we study the greening potential of combining two contrasting sources of renewable energy, namely solar energy and Open Air Cooling (OAC). OAC involves the use of outside air to cool data centers if the weather outside is cold and dry enough. Therefore OAC is likely to be abundant in colder weather and at night-time. In contrast, solar energy is correlated with sunny weather and day-time. Given their contrasting natures, we study whether synthesizing these two renewable sources of energy can yield complementary benefits. Given the intermittent nature of renewable energy, we use batteries and load shifting to facilitate the use of green energy and study trade-offs in brown energy reduction based on key parameters like battery size, number of solar panels, and radius of load movement. We do a detailed cost analysis, including amortized cost savings as well as a break-even analysis for different energy prices. Our results look encouraging and we find that we can significantly reduce brown energy consumption by about 55% to 59% just by combining the two technologies. We can increase our savings further to between 60% to 65% by adding load movement within a radius of 5000kms, and to between 73% to 89% by adding batteries.  more » « less
Award ID(s):
1763617 1413998
PAR ID:
10173206
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Tenth ACM International Conference on Future Energy Systems (e-Energy'19)
Page Range / eLocation ID:
303 to 314
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The majority of power consumption nowadays goes to heating. Global warming, air and water pollution caused by burning fossil fuel for heating encourage researchers and engineers to focus more on renewable energy. The solar system is one of Earth’s primary sources of clean power. Apart from photovoltaic panels and their effectiveness of power generation contribution, solar heaters are primarily used in different applications to recover heating needs in residential and commercial buildings. This paper focuses on an experimental study to generate heat by a solar system using metallic strips immersed in cement inside a solar vacuum tube. Heat can be transferred from inside the tube to the outside using metallic strips with high conductivity. Then, the metallic strips can be used as a heater to heat water or air in an isolated tank by direct contact between the hot strips and the fluid. In order to keep the system providing heat after the absence of sun’s rays, cement is used in this experiment as a heat repository. 
    more » « less
  2. The rooftop is a default location for photovoltaic solar panels and is often not enough to offset increasing building energy consumption. The vertical surface of urban buildings offers a prime location to harness solar energy. The overall goal of this research is to evaluate power production potentials and multi-functionalities of a 3D building integrated photovoltaic (BIPV) facade system. The traditional BIPV which is laminated with window glass obscures the view-out and limits daylight penetration. Unlike the traditional system, the 3D solar module was configured to reflect the sun path geometry to maximize year-round solar exposure and energy production. In addition, the 3D BIPV façade offers multiple functionalities – solar regulations, daylighting penetration, and view-out, resulting in energy savings from heating, cooling, and artificial lighting load. Its ability to produce solar energy offsets building energy consumption and contributes to net-zero-energy buildings. Both solar simulations and physical prototyping were carried out to investigate the promises and challenges of the 3D BIPV façade system compared to a traditional BIPV system. With climate emergency on the rise and the need for clean, sustainable energy becoming ever more pressing, the 3D BIPV façade in this paper offers a creative approach to tackling the problems of power production, building energy savings, and user health and wellbeing. 
    more » « less
  3. This work focuses on the problem of forecasting the energy availability of renewable sources such as solar and wind in smart grids. To solve this problem, we propose to use weather radar information to make a short-time prediction of the weather conditions in the area where the renewable sources are located. For this purpose, an object tracking method will be used to make the predictions by using as cues the reflectivity and the velocity. This paper centers in an object modeling approach based on clustering, which will be used for the tracking algorithm. 
    more » « less
  4. In the transition toward sustainable agriculture, farms have emerged as eco-friendly pioneers, harnessing cleanhybrid wind and solar systems to improve farm performance. A concern in this paradigm is the effective sizing of renewable energy systems to ensure optimal energy use within budget considerations. This research focuses on optimizing renewable energy sizing in small-scale ammonia production to meet specific farm demands and enhance local resilience, emphasizing the interplay between environmental and economic factors. These findings promise increased energy efficiency and sustainability in this innovative agricultural sector. Additionally, our approach considers small-scale ammonia plant needs and the dynamic relationships between ammonia, water, and farm demands. Simulations demonstrate substantial cost savings in farm electricity consumption. Specifically, scenarios with renewable energy integration in the farm can reduce at least 13% electricity cost compared to a grid-dependent system in the 15-year simulation. 
    more » « less
  5. Elastic actuation can improve human-robot interaction and energy efficiency for wearable robots. Previous work showed that the energy consumption of series elastic actuators can be a convex function of the series spring compliance. This function is useful to optimally select the series spring compliance that reduces the motor energy consumption. However, series springs have limited influence on the motor torque, which is a major source of the energy losses due to the associated Joule heating. Springs in parallel to the motor can significantly modify the motor torque and therefore reduce Joule heating, but it is unknown how to design springs that globally minimize energy consumption for a given motion of the load. In this work, we introduce the stiffness design of linear and nonlinear parallel elastic actuators via convex optimization. We show that the energy consumption of parallel elastic actuators is a convex function of the spring stiffness and compare the energy savings with that of optimal series elastic actuators. We analyze robustness of the solution in simulation by adding uncertainty of 20% of the RMS load kinematics and kinetics for the ankle, knee, and hip movements for level-ground human walking. When the winding Joule heating losses are dominant with respect to the viscous losses, our optimal PEA designs outperform SEA designs by further reducing the motor energy consumption up to 63%. Comparing to the linear PEA designs, our nonlinear PEA designs further reduced the motor energy consumption up to 31%. From our convex formulation, our global optimal nonlinear parallel elastic actuator designs give two different elongation-torque curves for positive and negative elongation, suggesting a clutching mechanism for the final implementation. In addition, the different torque-elongation profiles for positive and negative elongation for nonlinear parallel elastic actuators can cause sensitivity of the energy consumption to changes in the nominal load trajectory. 
    more » « less