skip to main content

Title: Worst-Case Optimal Data-Driven Estimators for Switched Discrete-Time Linear Systems
This paper proposes a data-driven framework to address the worst-case estimation problem for switched discrete-time linear systems based solely on the measured data (input & output) and an ℓ ∞ bound over the noise. We start with the problem of designing a worst-case optimal estimator for a single system and show that this problem can be recast as a rank minimization problem and efficiently solved using standard relaxations of rank. Then we extend these results to the switched case. Our main result shows that, when the mode variable is known, the problem can be solved proceeding in a similar manner. To address the case where the mode variable is unmeasurable, we impose the hybrid decoupling constraint(HDC) in order to reformulate the original problem as a polynomial optimization which can be reduced to a tractable convex optimization using moments-based techniques.  more » « less
Award ID(s):
1638234 1808381 1814631 1646121
Author(s) / Creator(s):
Date Published:
Journal Name:
2019 IEEE 58th Conference on Decision and Control (CDC)
Page Range / eLocation ID:
3417 to 3422
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bosonic encoding of quantum information into harmonic oscillators is a hardware efficient approach to battle noise. In this regard, oscillator-to-oscillator codes not only provide an additional opportunity in bosonic encoding, but also extend the applicability of error correction to continuous-variable states ubiquitous in quantum sensing and communication. In this work, we derive the optimal oscillator-to-oscillator codes among the general family of Gottesman-Kitaev-Preskill (GKP)-stablizer codes for homogeneous noise. We prove that an arbitrary GKP-stabilizer code can be reduced to a generalized GKP two-mode-squeezing (TMS) code. The optimal encoding to minimize the geometric mean error can be constructed from GKP-TMS codes with an optimized GKP lattice and TMS gains. For single-mode data and ancilla, this optimal code design problem can be efficiently solved, and we further provide numerical evidence that a hexagonal GKP lattice is optimal and strictly better than the previously adopted square lattice. For the multimode case, general GKP lattice optimization is challenging. In the two-mode data and ancilla case, we identify the D4 lattice—a 4-dimensional dense-packing lattice—to be superior to a product of lower dimensional lattices. As a by-product, the code reduction allows us to prove a universal no-threshold-theorem for arbitrary oscillators-to-oscillators codes based on Gaussian encoding, even when the ancilla are not GKP states.

    more » « less
  2. Topology optimization problems typically consider a single load case or a small, discrete number of load cases; however, practical structures are often subjected to infinitely many load cases that may vary in intensity, location and/or direction (e.g. moving/rotating loads or uncertain fixed loads). The variability of these loads significantly influences the stress distribution in a structure and should be considered during the design. We propose a locally stress-constrained topology optimization formulation that considers loads with continuously varying direction to ensure structural integrity under more realistic loading conditions. The problem is solved using an Augmented Lagrangian method, and the continuous range of load directions is incorporated through a series of analytic expressions that enables the computation of the worst-case maximum stress over all possible load directions. Variable load intensity is also handled by controlling the magnitude of load basis vectors used to derive the worst-case load. Several two- and three-dimensional examples demonstrate that topology-optimized designs are extremely sensitive to loads that vary in direction. The designs generated by this formulation are safer, more reliable, and more suitable for real applications, because they consider realistic loading conditions. 
    more » « less
  3. Human development is a threat to biodiversity and conservation organizations (COs) are purchasing land to protect areas for biodiversity preservation. COs have limited budgets and cannot purchase all the land necessary to perfectly preserve biodiversity, and human activities are uncertain, so exact developments are unpredictable. We propose a multistage, robust optimization problem with a data-driven hierarchical-structured uncertainty set which captures the endogenous nature of the binary (0-1) human land use uncertain parameters to help COs choose land parcels to purchase to minimize the worst-case human impact on biodiversity. In the proposed approach, the problem is formulated as a game between COs, which choose parcels to protect with limited budgets, and the human development, which will maximize the loss to the unprotected parcels. We leverage the cellular automata model to simulate the development based on climate data, land characteristics, and human land use data. We use the simulation to build data-driven uncertainty sets. We demonstrate that an equivalent formulation of the problem can be obtained that presents exogenous uncertainty only and where uncertain parameters only appear in the objective. We leverage this reformulation to propose a conservative $K$-adaptability reformulation of our problem that can be solved routinely by off-the-shelf solvers like Gurobi or CPLEX. The numerical results based on real data show that the proposed method reduces conservation loss by 19.46% on average compared to standard approaches used in practice for biodiversity conservation. 
    more » « less
  4. We consider the problem of learning the underlying structure of a general discrete pairwise Markov network. Existing approaches that rely on empirical risk minimization may perform poorly in settings with noisy or scarce data. To overcome these limitations, we propose a computationally efficient and robust learning method for this problem with near-optimal sample complexities. Our approach builds upon distributionally robust optimization (DRO) and maximum conditional log-likelihood. The proposed DRO estimator minimizes the worst-case risk over an ambiguity set of adversarial distributions within bounded transport cost or f-divergence of the empirical data distribution. We show that the primal minimax learning problem can be efficiently solved by leveraging sufficient statistics and greedy maximization in the ostensibly intractable dual formulation. Based on DRO’s approximation to Lipschitz and variance regularization, we derive near-optimal sample complexities matching existing results. Extensive empirical evidence with different corruption models corroborates the effectiveness of the proposed methods. 
    more » « less
  5. Recently, wireless communication technologies, such as Wireless Local Area Networks (WLANs), have gained increasing popularity in industrial control systems (ICSs) due to their low cost and ease of deployment, but communication delays associated with these technologies make it unsuitable for critical real-time and safety applications. To address concerns on network-induced delays of wireless communication technologies and bring their advantages into modern ICSs, wireless network infrastructure based on the Parallel Redundancy Protocol (PRP) has been proposed. Although application-specific simulations and measurements have been conducted to show that wireless network infrastructure based on PRP can be a viable solution for critical applications with stringent delay performance constraints, little has been done to devise an analytical framework facilitating the adoption of wireless PRP infrastructure in miscellaneous ICSs. Leveraging the deterministic network calculus (DNC) theory, we propose to analytically derive worst-case bounds on network- induced delays for critical ICS applications. We show that the problem of worst-case delay bounding for a wireless PRP network can be solved by performing network-calculus-based analysis on its non-feedforward traffic pattern. Closed-form expressions of worst-case delays are derived, which has not been found previously and allows ICS architects/designers to compute worst- case delay bounds for ICS tasks in their respective application domains of interest. Our analytical results not only provide insights into the impacts of network-induced delays on latency- critical tasks but also allow ICS architects/operators to assess whether proper wireless RPR network infrastructure can be adopted into their systems. 
    more » « less