skip to main content


Title: Nutritional Labels for Data and Models
An essential ingredient of successful machine-assisted decision-making, particularly in high-stakes decisions, is interpretability –– allowing humans to understand, trust and, if necessary, contest, the computational process and its outcomes. These decision-making processes are typically complex: carried out in multiple steps, employing models with many hidden assumptions, and relying on datasets that are often used outside of the original context for which they were intended. In response, humans need to be able to determine the “fitness for use” of a given model or dataset, and to assess the methodology that was used to produce it. To address this need, we propose to develop interpretability and transparency tools based on the concept of a nutritional label, drawing an analogy to the food industry, where simple, standard labels convey information about the ingredients and production processes. Nutritional labels are derived automatically or semi-automatically as part of the complex process that gave rise to the data or model they describe, embodying the paradigm of interpretability-by-design. In this paper we further motivate nutritional labels, describe our instantiation of this paradigm for algorithmic rankers, and give a vision for developing nutritional labels that are appropriate for different contexts and stakeholders.  more » « less
Award ID(s):
1916647 1926250
NSF-PAR ID:
10176629
Author(s) / Creator(s):
;
Date Published:
Journal Name:
A Quarterly bulletin of the Computer Society of the IEEE Technical Committee on Data Engineering
Volume:
42
Issue:
3
ISSN:
1053-1238
Page Range / eLocation ID:
13-23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding why animals (including humans) choose one thing over another is one of the key questions underlying the fields of behavioural ecology, behavioural economics and psychology. Most traditional studies of food choice in animals focus on simple, single‐attribute decision tasks. However, animals in the wild are often faced with multi‐attribute choice tasks where options in the choice set vary across multiple dimensions. Multi‐attribute decision‐making is particularly relevant for flower‐visiting insects faced with deciding between flowers that may differ in reward attributes such as sugar concentration, nectar volume and pollen composition as well as non‐rewarding attributes such as colour, symmetry and odour. How do flower‐visiting insects deal with complex multi‐attribute decision tasks?

    Here we review and synthesise research on the decision strategies used by flower‐visiting insects when making multi‐attribute decisions. In particular, we review how different types of foraging frameworks (classic optimal foraging theory, nutritional ecology, heuristics) conceptualise multi‐attribute choice and we discuss how phenomena such as innate preferences, flower constancy and context dependence influence our understanding of flower choice.

    We find that multi‐attribute decision‐making is a complex process that can be influenced by innate preferences, flower constancy, the composition of the choice set and economic reward value. We argue that to understand and predict flower choice in flower‐visiting insects, we need to move beyond simplified choice sets towards a view of multi‐attribute choice which integrates the role of non‐rewarding attributes and which includes flower constancy, innate preferences and context dependence. We further caution that behavioural experiments need to consider the possibility of context dependence in the design and interpretation of preference experiments.

    We conclude with a discussion of outstanding questions for future research. We also present a conceptual framework that incorporates the multiple dimensions of choice behaviour.

     
    more » « less
  2. Introduction Integrated water management (IWM) involves a range of policies, actions, and organizational processes that go beyond traditional hydrology to consider multifaceted aspects of complex water resource systems. Due to its transdisciplinary nature, IWM comprises input from diverse stakeholders, each with unique perceptions, values, and experiences. However, stakeholders from differing backgrounds may disagree on best practices and collective paths forward. As such, successful IWM must address key governance principles (e.g., information flow, collective decision-making, and power relations) across social and institutional scales. Here, we sought to demonstrate how network structure impacts shared decision-making within IWM. Methods We explored a case study in Houston, Texas, USA, where decision-making stakeholders from various sectors and levels of governance engaged in a participatory modeling workshop to improve adoption of nature-based solutions (NBS) through IWM. The stakeholders used fuzzy cognitive mapping (FCM) to define an IWM model comprising multifaceted elements and their interrelationships, which influenced the adoption of NBS in Houston. We applied grounded theory and inductive reasoning to categorize tacit belief schemas regarding how stakeholders viewed themselves within the management system. We then used FCM-based modeling to explore how unique NBS policies would translate into more (or less) NBS adoption. Finally, we calculated specific network metrics (e.g., density, hierarchy, and centrality indices) to better understand the structure of human-water relations embedded within the IWM model. We compared the tacit assumptions about stakeholder roles in IWM against the quantitative degrees of influence and collectivism embedded within the stakeholder-defined model. Results and discussion Our findings revealed a mismatch between stakeholders' external belief statements about IWM and their internal assumptions through cognitive mapping and participatory modeling. The case study network was characterized by a limited degree of internal coordination (low density index), high democratic potential (low hierarchy index), and high-efficiency management opportunities (high centrality index), which transcended across socio-institutional scales. These findings contrasted with several of the belief schemas described by stakeholders during the group workshop. We describe how ongoing partnership with the stakeholders resulted in an opportunity for adaptive learning, where the NBS planning paradigm began to shift toward trans-scale collaboration aimed at high-leverage management opportunities. We emphasize how network analytics allowed us to better understand the extent to which key governance principles drove the behavior of the IWM model, which we leveraged to form deeper stakeholder partnerships by identifying hidden opportunities for governance transformation. 
    more » « less
  3. null (Ed.)
    Explainability has emerged as a critical AI research objective, but the breadth of proposed methods and application domains suggest that criteria for explanation vary greatly. In particular, what counts as a good explanation, and what kinds of explanation are computationally feasible, has become trickier in light of oqaque “black box” systems such as deep neural networks. Explanation in such cases has drifted from what many philosophers stipulated as having to involve deductive and causal principles to mere “interpretation,” which approximates what happened in the target system to varying degrees. However, such post hoc constructed rationalizations are highly problematic for social robots that operate interactively in spaces shared with humans. For in such social contexts, explanations of behavior, and, in particular, justifications for violations of expected behavior, should make reference to socially accepted principles and norms. In this article, we show how a social robot’s actions can face explanatory demands for how it came to act on its decision, what goals, tasks, or purposes its design had those actions pursue and what norms or social constraints the system recognizes in the course of its action. As a result, we argue that explanations for social robots will need to be accurate representations of the system’s operation along causal, purposive, and justificatory lines. These explanations will need to generate appropriate references to principles and norms—explanations based on mere “interpretability” will ultimately fail to connect the robot’s behaviors to its appropriate determinants. We then lay out the foundations for a cognitive robotic architecture for HRI, together with particular component algorithms, for generating explanations and engaging in justificatory dialogues with human interactants. Such explanations track the robot’s actual decision-making and behavior, which themselves are determined by normative principles the robot can describe and use for justifications. 
    more » « less
  4. Abstract

    Metal additive manufacturing (AM) presents advantages such as increased complexity for a lower part cost and part consolidation compared to traditional manufacturing. The multiscale, multiphase AM processes have been shown to produce parts with non-homogeneous microstructures, leading to variability in the mechanical properties based on complex process–structure–property (p-s-p) relationships. However, the wide range of processing parameters in additive machines presents a challenge in solely experimentally understanding these relationships and calls for the use of digital twins that allow to survey a larger set of parameters using physics-driven methods. Even though physics-driven methods advance the understanding of the p-s-p relationships, they still face challenges of high computing cost and the need for calibration of input parameters. Therefore, data-driven methods have emerged as a new paradigm in the exploration of the p-s-p relationships in metal AM. Data-driven methods are capable of predicting complex phenomena without the need for traditional calibration but also present drawbacks of lack of interpretability and complicated validation. This review article presents a collection of physics- and data-driven methods and examples of their application for understanding the linkages in the p-s-p relationships (in any of the links) in widely used metal AM techniques. The review also contains a discussion of the advantages and disadvantages of the use of each type of model, as well as a vision for the future role of both physics-driven and data-driven models in metal AM.

     
    more » « less
  5. The increased integration of artificial intelligence (AI) technologies in human workflows has resulted in a new paradigm of AI-assisted decision making,in which an AI model provides decision recommendations while humans make the final decisions. To best support humans in decision making, it is critical to obtain a quantitative understanding of how humans interact with and rely on AI. Previous studies often model humans' reliance on AI as an analytical process, i.e., reliance decisions are made based on cost-benefit analysis. However, theoretical models in psychology suggest that the reliance decisions can often be driven by emotions like humans' trust in AI models. In this paper, we propose a hidden Markov model to capture the affective process underlying the human-AI interaction in AI-assisted decision making, by characterizing how decision makers adjust their trust in AI over time and make reliance decisions based on their trust. Evaluations on real human behavior data collected from human-subject experiments show that the proposed model outperforms various baselines in accurately predicting humans' reliance behavior in AI-assisted decision making. Based on the proposed model, we further provide insights into how humans' trust and reliance dynamics in AI-assisted decision making is influenced by contextual factors like decision stakes and their interaction experiences. 
    more » « less