skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Selective Sampling for Sensor Type Classification in Buildings
A key barrier to applying any smart technology to a building is the requirement of locating and connecting to the necessary resources among the thousands of sensing and control points, i.e., the metadata mapping problem. Existing solutions depend on exhaustive manual annotation of sensor metadata - a laborious, costly, and hardly scalable process. To reduce the amount of manual effort required, this paper presents a multi-oracle selective sampling framework to leverage noisy labels from information sources with unknown reliability such as existing buildings, which we refer to as weak oracles, for metadata mapping. This framework involves an interactive process, where a small set of sensor instances are progressively selected and labeled for it to learn how to aggregate the noisy labels as well as to predict sensor types. Two key challenges arise in designing the framework, namely, weak oracle reliability estimation and instance selection for querying. To address the first challenge, we develop a clustering-based approach for weak oracle reliability estimation to capitalize on the observation that weak oracles perform differently in different groups of instances. For the second challenge, we propose a disagreement-based query selection strategy to combine the potential effect of a labeled instance on both reducing classifier uncertainty and improving the quality of label aggregation. We evaluate our solution on a large collection of real-world building sensor data from 5 buildings with more than 11, 000 sensors of 18 different types. The experiment results validate the effectiveness of our solution, which outperforms a set of state-of-the-art baselines.  more » « less
Award ID(s):
1718216 1940291
NSF-PAR ID:
10177155
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)
Page Range / eLocation ID:
241 to 252
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Precise and eloquent label information is fundamental for interpreting the underlying data distributions distinctively and training of supervised and semi-supervised learning models adequately. But obtaining large amount of labeled data demands substantial manual effort. This obligation can be mitigated by acquiring labels of most informative data instances using Active Learning. However labels received from humans are not always reliable and poses the risk of introducing noisy class labels which will degrade the efficacy of a model instead of its improvement. In this paper, we address the problem of annotating sensor data instances of various Activities of Daily Living (ADLs) in smart home context. We exploit the interactions between the users and annotators in terms of relationships spanning across spatial and temporal space which accounts for an activity as well. We propose a novel annotator selection model SocialAnnotator which exploits the interactions between the users and annotators and rank the annotators based on their level of correspondence. We also introduce a novel approach to measure this correspondence distance using the spatial and temporal information of interactions, type of the relationships and activities. We validate our proposed SocialAnnotator framework in smart environments achieving ≈ 84% statistical confidence in data annotation 
    more » « less
  2. null (Ed.)
    Recent advances in weakly supervised learn- ing enable training high-quality text classifiers by only providing a few user-provided seed words. Existing methods mainly use text data alone to generate pseudo-labels despite the fact that metadata information (e.g., author and timestamp) is widely available across various domains. Strong label indicators exist in the metadata and it has been long overlooked mainly due to the following challenges: (1) metadata is multi-typed, requiring systematic modeling of different types and their combinations, (2) metadata is noisy, some metadata entities (e.g., authors, venues) are more compelling label indicators than others. In this paper, we propose a novel framework, META, which goes beyond the existing paradigm and leverages metadata as an additional source of weak supervision. Specifically, we organize the text data and metadata together into a text-rich network and adopt network motifs to capture appropriate combinations of metadata. Based on seed words, we rank and filter motif instances to distill highly label-indicative ones as “seed motifs”, which provide additional weak supervision. Following a boot-strapping manner, we train the classifier and expand the seed words and seed motifs iteratively. Extensive experiments and case studies on real-world datasets demonstrate superior performance and significant advantages of leveraging metadata as weak supervision. 
    more » « less
  3. null (Ed.)
    Sensor metadata tagging, akin to the named entity recognition task, provides key contextual information (e.g., measurement type and location) about sensors for running smart building applications. Unfortunately, sensor metadata in different buildings often follows dis- tinct naming conventions. Therefore, learning a tagger currently requires extensive annotations on a per building basis. In this work, we propose a novel framework, SeNsER, which learns a sensor metadata tagger for a new building based on its raw metadata and some existing fully annotated building. It leverages the commonality between different buildings: At the character level, it employs bidirectional neural language models to capture the shared underlying patterns between two buildings and thus regularizes the feature learning process; At the word level, it leverages as features the k-mers existing in the fully annotated building. During inference, we further incorporate the information obtained from sources such as Wikipedia as prior knowledge. As a result, SeNsER shows promising results in extensive experiments on multiple real-world buildings. 
    more » « less
  4. The recent advances in the automation of metadata normalization and the invention of a unified schema --- Brick --- alleviate the metadata normalization challenge for deploying portable applications across buildings. Yet, the lack of compatibility between existing metadata normalization methods precludes the possibility of comparing and combining them. While generic machine learning (ML) frameworks, such as MLJAR and OpenML, provide versatile interfaces for standard ML problems, they cannot easily accommodate the metadata normalization tasks for buildings due to the heterogeneity in the inference scope, type of data required as input, evaluation metric, and the building-specific human-in-the-loop learning procedure. We propose Plaster, an open and modular framework that incorporates existing advances in building metadata normalization. It provides unified programming interfaces for various types of learning methods for metadata normalization and defines standardized data models for building metadata and timeseries data. Thus, it enables the integration of different methods via a workflow, benchmarking of different methods via unified interfaces, and rapid prototyping of new algorithms. With Plaster, we 1) show three examples of the workflow integration, delivering better performance than individual algorithms, 2) benchmark/analyze five algorithms over five common buildings, and 3) exemplify the process of developing a new algorithm involving time series features. We believe Plaster will facilitate the development of new algorithms and expedite the adoption of standard metadata schema such as Brick, in order to enable seamless smart building applications in the future. 
    more » « less
  5. Proc. 2023 European Conf. on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (Ed.)
    Automated relation extraction without extensive human-annotated data is a crucial yet challenging task in text mining. Existing studies typically use lexical patterns to label a small set of high-precision relation triples and then employ distributional methods to enhance detection recall. This precision-first approach works well for common relation types but struggles with unconventional and infrequent ones. In this work, we propose a recall-first approach that first leverages high-recall patterns (e.g., a per:siblings relation normally requires both the head and tail entities in the person type) to provide initial candidate relation triples with weak labels and then clusters these candidate relation triples in a latent spherical space to extract high-quality weak supervisions. Specifically, we present a novel framework, RCLUS, where each relation triple is represented by its head/tail entity type and the shortest dependency path between the entity mentions. RCLUS first applies high-recall patterns to narrow down each relation type’s candidate space. Then, it embeds candidate relation triples in a latent space and conducts spherical clustering to further filter out noisy candidates and identify high-quality weakly-labeled triples. Finally, RCLUS leverages the above-obtained triples to prompt-tune a pre-trained language model and utilizes it for improved extraction coverage. We conduct extensive experiments on three public datasets and demonstrate that RCLUS outperforms the weakly-supervised baselines by a large margin and achieves generally better performance than fully-supervised methods in low-resource settings. 
    more » « less