skip to main content


Title: Capping Layers to Improve the Electrical Stress Stability of MoS 2 Transistors
Two-dimensional (2D) materials offer exciting possibilities for numerous applications, including next-generation sensors and field-effect transistors (FETs). With their atomically thin form factor, it is evident that molecular activity at the interfaces of 2D materials can shape their electronic properties. Although much attention has focused on engineering the contact and dielectric interfaces in 2D material-based transistors to boost their drive current, less is understood about how to tune these interfaces to improve the long-term stability of devices. In this work, we evaluated molybdenum disulfide (MoS2) transistors under continuous electrical stress for periods lasting up to several days. During stress in ambient air, we observed temporary threshold voltage shifts that increased at higher gate voltages or longer stress durations, correlating to changes in interface trap states (ΔNit) of up to 1012 cm–2. By modifying the device to include either SU-8 or Al2O3 as an additional dielectric capping layer on top of the MoS2 channel, we were able to effectively reduce or even eliminate this unstable behavior. However, we found this encapsulating material must be selected carefully, as certain choices actually amplified instability or compromised device yield, as was the case for Al2O3, which reduced yield by 20% versus all other capping layers. Further refining these strategies to preserve stability in 2D devices will be crucial for their continued integration into future technologies.  more » « less
Award ID(s):
1915814
NSF-PAR ID:
10179079
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACS Applied Materials & Interfaces
ISSN:
1944-8244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Memristors are promising candidates for constructing neural networks. However, their dissimilar working mechanism to that of the addressing transistors can result in a scaling mismatch, which may hinder efficient integration. Here, we demonstrate two-terminal MoS2 memristors that work with a charge-based mechanism similar to that in transistors, which enables the homogeneous integration with MoS2 transistors to realize one-transistor-one-memristor addressable cells for assembling programmable network. The homogenously integrated cells are implemented in a 2×2 network array to demonstrate the enabled addressability and programmability. The potential for assembling scalable network is evaluated in a simulated neural network using obtained realistic device parameters, which achieves over 91% pattern recognition accuracy. This study also reveals a generic mechanism and strategy that can be applied to other semiconducting devices for the engineering and homogeneous integration of memristive systems. 
    more » « less
  2. Abstract

    Two-dimensional (2D) materials such as semiconductors and ferroelectrics are promising for future energy-efficient logic devices because of their extraordinary electronic properties at atomic thickness. In this work, we investigated a van der Waals heterostructure composited of 2D semiconducting MoS2and 2D ferroelectric CuInP2S6(CIPS) and NiPS3. Instead of using 2D ferroelectrics as conventional gate dielectric layers, here we applied CIPS and NiPS3as a ferroelectric capping layer, and investigated a long-distance coupling effect with the gate upon the sandwiched 2D MoS2channels. Our experimental results showed an outstanding enhancement of the electrodynamic gating in 2D MoS2transistors, represented by a significant reduction of subthreshold swing at room temperature. This was due to the coupling-induced polarization of 2D ferroelectrics at 2D semiconductor surface which led to an effective and dynamic magnification of the gate capacitance. Meanwhile, the electrostatic gating was remained steady after adding the ferroelectric capping layer, providing ease and compatibility for further implementation with existing circuit and system design. Our work demonstrates the long-distance coupling effect of 2D ferroelectrics in a capping architecture, reveals its impacts from both electrodynamic and electrostatic perspectives, and expands the potential of 2D ferroelectrics to further improve the performance of energy-efficient nanoelectronics.

     
    more » « less
  3. For continual scaling in microelectronics, new processes for precise high volume fabrication are required. Area-selective atomic layer deposition (ASALD) can provide an avenue for self-aligned material patterning and offers an approach to correct edge placement errors commonly found in top-down patterning processes. Two-dimensional transition metal dichalcogenides also offer great potential in scaled microelectronic devices due to their high mobilities and few-atom thickness. In this work, we report ASALD of MoS2 thin films by deposition with MoF6 and H2S precursor reactants. The inherent selectivity of the MoS2 atomic layer deposition (ALD) process is demonstrated by growth on common dielectric materials in contrast to thermal oxide/ nitride substrates. The selective deposition produced few layer MoS2 films on patterned growth regions as measured by Raman spectroscopy and time-of-flight secondary ion mass spectrometry. We additionally demonstrate that the selectivity can be enhanced by implementing atomic layer etching (ALE) steps at regular intervals during MoS2 growth. This area-selective ALD process provides an approach for integrating 2D films into next-generation devices by leveraging the inherent differences in surface chemistries and providing insight into the effectiveness of a supercycle ALD and ALE process. 
    more » « less
  4. Neuromorphic hardware promises to revolutionize information technology with brain-inspired parallel processing, in-memory computing, and energy-efficient implementation of artificial intelligence and machine learning. In particular, two-dimensional (2D) memtransistors enable gate-tunable non-volatile memory, bio-realistic synaptic phenomena, and atomically thin scaling. However, previously reported 2D memtransistors have not achieved low operating voltages without compromising gate-tunability. Here, we overcome this limitation by demonstrating MoS2 memtransistors with short channel lengths < 400 nm, low operating voltages < 1 V, and high field-effect switching ratios > 10,000 while concurrently achieving strong memristive responses. This functionality is realized by fabricating back-gated memtransistors using highly polycrystalline monolayer MoS2 channels on high-κ Al2O3 dielectric layers. Finite-element simulations confirm enhanced electrostatic modulation near the channel contacts, which reduces operating voltages without compromising memristive or field-effect switching. Overall, this work demonstrates a pathway for reducing the size and power consumption of 2D memtransistors as is required for ultrahigh-density integration. 
    more » « less
  5. Abstract

    2D magnetic materials hold promise for quantum and spintronic applications. 2D antiferromagnetic materials are of particular interest due to their relative insensitivity to external magnetic fields and higher switching speeds compared to 2D ferromagnets. However, their lack of macroscopic magnetization impedes detection and control of antiferromagnetic order, thus motivating magneto‐electrical measurements for these purposes. Additionally, many 2D magnetic materials are ambient‐reactive and electrically insulating or highly resistive below their magnetic ordering temperatures, which imposes severe constraints on electronic device fabrication and characterization. Herein, these issues are overcome via a fabrication protocol that achieves electrically conductive devices from the ambient‐reactive 2D antiferromagnetic semiconductor NiI2. The resulting gate‐tunable transistors show band‐like electronic transport below the antiferromagnetic and multiferroic transition temperatures of NiI2, revealing a Hall mobility of 15 cm2 V−1 s−1at 1.7 K. These devices also allow direct electrical probing of the thickness‐dependent multiferroic phase transition temperature of NiI2from 59 K (bulk) to 28 K (monolayer).

     
    more » « less