skip to main content


Title: Coseismic Displacements and Surface Fractures from Sentinel-1 InSAR: 2019 Ridgecrest Earthquakes
Abstract Interferometric Synthetic Aperture Radar is an important tool for imaging surface deformation from large continental earthquakes. Here, we present maps of coseismic displacement and strain from the 2019 Ridgecrest earthquakes using multiple Sentinel-1 images. We provide three types of interferometric products. (1) Standard interferograms from two look directions provide an overview of the deformation and can be used for modeling coseismic slip. (2) Phase gradient maps from stacks of coseismic interferograms provide high-resolution (∼30  m) images of strain concentration and surface fracturing that can be used to guide field surveys. (3) High-pass filtered, stacked, unwrapped phase is decomposed into east–west and up–down, south–north components and is used to determine the sense of fault slip. The resulting phase gradient maps reveal over 300 surface fractures, including triggered slip on the Garlock fault. The east–west component of high-pass filtered phase reveals the polarity of the strike-slip offset (right lateral or left lateral) for many of the fractures. We find a small number of fractures that have slip polarity that is retrograde to the background tectonic stress. This is similar to observations of retrograde slip observed near the 1999 Mw 7.1 Hector Mine rupture, but the Ridgecrest observations are more completely imaged by the frequent and high-quality acquisitions from the twin Sentinel-1 spacecrafts. Determining whether the retrograde features are triggered slip on existing faults, or compliant fault deformation in response to stress changes from the Ridgecrest earthquakes, or new Coulomb-style failures, will require additional field work, modeling, and analysis.  more » « less
Award ID(s):
1834807
NSF-PAR ID:
10179948
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Seismological Research Letters
Volume:
91
Issue:
4
ISSN:
0895-0695
Page Range / eLocation ID:
1979 to 1985
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY InSAR displacement time-series are emerging as a valuable product to study a number of Earth processes. One challenge to current time-series processing methods, however, is that when large earthquakes occur, they can leave sharp coseismic steps in the time-series. These discontinuities can cause current atmospheric correction and noise smoothing algorithms to break down, as these algorithms commonly assume that deformation is steady through time. Here, we aim to remedy this by exploring two methods for correcting earthquake offsets in InSAR time-series: a simple difference offset estimate (SDOE) process and a multiparameter offset estimate (MPOE) parametric time-series inversion technique. We apply these methods to a 2-yr time-series of Sentinel-1 interferograms spanning the 2019 Ridgecrest, CA earthquake sequence. Descending track results indicate that the SDOE method precisely corrects for only 20 per cent of the coseismic offsets at 62 study locations included in our scene and only partially corrects or sometimes overcorrects for the rest of our study sites. On the other hand, the MPOE estimate method successfully corrects the coseismic offset for the majority of sites in our analysis. This MPOE method allows us to produce InSAR time-series and data-derived estimates of deformation during each phase of the earthquake cycle. In order to better isolate and estimate the signal of post-seismic lithospheric deformation in the InSAR time-series, we apply a GNSS-based correction to our interferograms. This correction ties the interferograms to median-filtered weekly GNSS displacements and removes additional atmospheric artefacts. We present InSAR-based estimates of post-seismic deformation for the area around the Ridgecrest rupture, as well as a 2-yr coseismic-corrected, GNSS-corrected InSAR time-series data set. This GNSS-corrected InSAR time-series will enable future modelling of post-seismic processes such as afterslip in the near field of the rupture, poroelastic deformation at intermediate distances and viscoelastic deformation at longer timescales in the far field. 
    more » « less
  2. Abstract

    The 2021 Maduo earthquake ruptured a 150 km‐long left‐lateral fault in the northeast Tibet. We used Synthetic Aperture Radar data collected by the Sentinel‐1A/B satellites within days of the earthquake to derive a finite fault model and investigate the details of slip distribution with depth. We generated coseismic interferograms and pixel offsets from different look directions corresponding to the ascending and descending satellite orbits. At the eastern end the rupture bifurcated into two sub‐parallel strands, with larger slip on the northern strand. Inversions of coseismic displacements show maximum slip to the east of the epicenter. The averaged coseismic slip has a peak at depth of 3–4 km, similar to slip distributions of a number of shallow strike‐slip earthquakes. Postseismic observations over several weeks following the Maduo earthquake reveal surface slip with amplitude up to 0.1 m that at least partially eliminated the coseismic slip deficit in the uppermost crust.

     
    more » « less
  3. On February 6, 2023, two large earthquakes occurred near the Turkish town of Kahramanmaraş. The moment magnitude (Mw) 7.8 mainshock ruptured a 310 km-long segment of the left-lateral East Anatolian Fault, propagating through multiple releasing step-overs. The Mw 7.6 aftershock involved nearby left-lateral strike-slip faults of the East Anatolian Fault Zone, causing a 150 km-long rupture. We use remote-sensing observations to constrain the spatial distribution of coseismic slip for these two events and the February 20 Mw 6.4 aftershock near Antakya. Pixel tracking of optical and synthetic aperture radar data of the Sentinel-2 and Sentinel-1 satellites, respectively, provide near-field surface displacements. High-rate Global Navigation Satellite System data constrain each event separately. Coseismic slip extends from the surface to about 15 km depth with a shallow slip deficit. Most aftershocks cluster at major fault bends, surround the regions of high coseismic slip, or extend outward of the ruptured faults. For the mainshock, rupture propagation stopped southward at the diffuse termination of the East Anatolian fault and tapered off northward into the Pütürge segment, some 20 km south of the 2020 Mw 6.8 Elaziğ earthquake, highlighting a potential seismic gap. These events underscore the high seismic potential of immature fault systems. 
    more » « less
  4. null (Ed.)
    ABSTRACT We investigate the deformation processes during the 2019 Ridgecrest earthquake sequence by combining Global Navigation Satellite Systems, strong-motion, and Interferometric Synthetic Aperture Radar datasets in a joint inversion. The spatial complementarity of slip between the Mw 6.4 foreshock, Mw 7.1 mainshock, and afterslip suggests the importance of static stress transfer as a triggering mechanism during the rupture sequence. The coseismic slip of the foreshock concentrates mainly on the east-northeast–west-southwest fault above the hypocenter at depths of 2–8 km. The slip distribution of the mainshock straddles the region above the hypocenter with two isolated patches located to the north-northwest and south-southeast, respectively. The geodetically determined moment magnitudes of the foreshock and mainshock are equivalent to moment magnitudes Mw 6.4 and 7.0, assuming a rigidity of 30 GPa. We find a significant shallow slip deficit (>60%) in the Ridgecrest ruptures, likely resulting from the immature fault system in which the sequence occurred. Rapid afterslip concentrates at depths of 2–6 km, surrounding the rupture areas of the foreshock and mainshock. The ruptures also accelerated viscoelastic flow at lower-crustal depths. The Garlock fault was loaded at several locations, begging the question of possible delayed triggering. 
    more » « less
  5. Abstract

    Imaging tectonic creep along active faults is critical for measuring strain accumulation and ultimately understanding the physical processes that guide creep and the potential for seismicity. We image tectonic deformation along the central creeping section of the San Andreas Fault at the Dry Lake Valley paleoseismic site (36.468°N, 121.055°W) using three data sets with varying spatial and temporal scales: (1) an Interferometric Synthetic Aperture Radar (InSAR) velocity field with an ~100‐km footprint produced from Sentinel‐1 satellite imagery, (2) light detection and ranging (lidar) and structure‐from‐motion 3‐D topographic differencing that resolves a decade of deformation over a 1‐km aperture, and (3) surface fractures that formed over the 3‐ to 4‐m wide fault zone during a drought from late 2012 to 2014. The InSAR velocity map shows that shallow deformation is localized to the San Andreas Fault. We demonstrate a novel approach for differencing airborne lidar and structure‐from‐motion topography that facilitates resolving deformation along and adjacent to the San Andreas Fault. The 40‐m resolution topographic differencing resolves a 2.5 ± 0.2 cm/yr slip rate localized to the fault. The opening‐mode fractures accommodate cm/yr of fault slip. A 90% ± 30% of the 1‐km aperture deformation is accommodated over the several meter‐wide surface trace of the San Andreas Fault. The extension direction inferred from the opening‐mode fractures and topographic differencing is 40°–48° from the local trend of the San Andreas Fault. The localization of deformation likely reflects the well‐oriented and mature fault.

     
    more » « less