skip to main content


Title: Assessing Child Communication Engagement via Speech Recognition in Naturalistic Active Learning Spaces
The ability to assess children’s conversational interaction is critical in determining language and cognitive proficiency for typically developing and at-risk children. The earlier at-risk child is identified, the earlier support can be provided to reduce the social impact of the speech disorder. To date, limited research has been performed for young child speech recognition in classroom settings. This study addresses speech recognition research with naturalistic children’s speech, where age varies from 2.5 to 5 years. Data augmentation is relatively under explored for child speech. Therefore, we investigate the effectiveness of data augmentation techniques to improve both language and acoustic models. We explore alternate text augmentation approaches using adult data, Web data, and via text generated by recurrent neural networks. We also compare several acoustic augmentation techniques: speed perturbation, tempo perturbation, and adult data. Finally, we comment on child word count rates to assess child speech development.  more » « less
Award ID(s):
2016725
NSF-PAR ID:
10180044
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ISCA ODYSSEY-2020
Page Range / eLocation ID:
396 to 401
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. IEEE SIGNAL PROCESSING SOCIETY (Ed.)
    This paper 1 presents a novel system which utilizes acoustic, phonological, morphosyntactic, and prosodic information for binary automatic dialect detection of African American English. We train this system utilizing adult speech data and then evaluate on both children’s and adults’ speech with unmatched training and testing scenarios. The proposed system combines novel and state-of-the-art architectures, including a multi-source transformer language model pre-trained on Twitter text data and fine-tuned on ASR transcripts as well as an LSTM acoustic model trained on self-supervised learning representations, in order to learn a comprehensive view of dialect. We show robust, explainable performance across recording conditions for different features for adult speech, but fusing multiple features is important for good results on children’s speech. 
    more » « less
  2. Understanding and assessing child verbal communication patterns is critical in facilitating effective language development. Typically speaker diarization is performed to explore children’s verbal engagement. Understanding which activity areas stimulate verbal communication can help promote more efficient language development. In this study, we present a two stage children vocal engagement prediction system that consists of (1) a near to real-time, noise robust system that measures the duration of child-to-adult and child-to-child conversations, and tracks the number of conversational turn-takings, (2) a novel child location tracking strategy, that determines in which activity areas a child spends most/least of their time. A proposed child–adult turn-taking solution relies exclusively on vocal cues observed during the interaction between a child and other children, and/or classroom teachers. By employing a threshold optimized speech activity detection using a linear combination of voicing measures, it is possible to achieve effective speech/non-speech segment detection prior to conversion assessment. This TO-COMBO-SAD reduces classification error rates for adult-child audio by 21.34% and 27.3% compared to a baseline i-Vector and standard Bayesian Information Criterion diarization systems, respectively. In addition, this study presents a unique location tracking system adult-child that helps determine the quantity of child–adult communication in specific activity areas, and which activities stimulate voice communication engagement in a child–adult education space. We observe that our proposed location tracking solution offers unique opportunities to assess speech and language interaction for children, and quantify the location context which would contribute to improve verbal communication. 
    more » « less
  3. Children’s automatic speech recognition (ASR) is always difficult due to, in part, the data scarcity problem, especially for kindergarten-aged kids. When data are scarce, the model might overfit to the training data, and hence good starting points for training are essential. Recently, meta-learning was proposed to learn model initialization (MI) for ASR tasks of different languages. This method leads to good performance when the model is adapted to an unseen language. How-ever, MI is vulnerable to overfitting on training tasks (learner overfitting). It is also unknown whether MI generalizes to other low-resource tasks. In this paper, we validate the effectiveness of MI in children’s ASR and attempt to alleviate the problem of learner overfitting. To achieve model-agnostic meta-learning (MAML), we regard children’s speech at each age as a different task. In terms of learner overfitting, we propose a task-level augmentation method by simulating new ages using frequency warping techniques. Detailed experiments are conducted to show the impact of task augmentation on each age for kindergarten-aged speech. As a result, our approach achieves a relative word error rate (WER) improvement of 51% over the baseline system with no augmentation or initialization. 
    more » « less
  4. Speech and language development are early indicators of overall analytical and learning ability in children. The preschool classroom is a rich language environment for monitoring and ensuring growth in young children by measuring their vocal interactions with teachers and classmates. Early childhood researchers are naturally interested in analyzing naturalistic vs. controlled lab recordings to measure both quality and quantity of such interactions. Unfortunately, present-day speech technologies are not capable of addressing the wide dynamic scenario of early childhood classroom settings. Due to the diversity of acoustic events/conditions in such daylong audio streams, automated speaker diarization technology would need to be advanced to address this challenging domain for segmenting audio as well as information extraction. This study investigates an alternate Deep Learning-based diarization solution for segmenting classroom interactions of 3-5 year old children with teachers. In this context, the focus on speech-type diarization which classifies speech segments as being either from adults or children partitioned across multiple classrooms. Our proposed ResNet model achieves a best F1-score of ∼78.0% on data from two classrooms, based on dev and test sets of each classroom. It is utilized with Automatic Speech Recognition-based resegmentation modules to perform child-adult diarization. Additionally, F1-scores are obtained for individual segments with corresponding speaker tags (e.g., adult vs. child), which provide knowledge for educators on child engagement through naturalistic communications. The study demonstrates the prospects of addressing educational assessment needs through communication audio stream analysis, while maintaining both security and privacy of all children and adults. The resulting child communication metrics have been used for broad-based feedback for teachers with the help of visualizations. 
    more » « less
  5. Documenting endangered languages supports the historical preservation of diverse cultures. Automatic speech recognition (ASR), while potentially very useful for this task, has been underutilized for language documentation due to the challenges inherent in building robust models from extremely limited audio and text training resources. In this paper, we explore the utility of supplementing existing training resources using synthetic data, with a focus on Seneca, a morphologically complex endangered language of North America. We use transfer learning to train acoustic models using both the small amount of available acoustic training data and artificially distorted copies of that data. We then supplement the language model training data with verb forms generated by rule and sentences produced by an LSTM trained on the available text data. The addition of synthetic data yields reductions in word error rate, demonstrating the promise of data augmentation for this task. 
    more » « less