skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep-learning-based image reconstruction for compressed ultrafast photography
Compressed ultrafast photography (CUP) is a computational optical imaging technique that can capture transient dynamics at an unprecedented speed. Currently, the image reconstruction of CUP relies on iterative algorithms, which are time-consuming and often yield nonoptimal image quality. To solve this problem, we develop a deep-learning-based method for CUP reconstruction that substantially improves the image quality and reconstruction speed. A key innovation toward efficient deep learning reconstruction of a large three-dimensional (3D) event datacube ( x , y , t ) ( x , y , spatial coordinate; t , time) is that we decompose the original datacube into massively parallel two-dimensional (2D) imaging subproblems, which are much simpler to solve by a deep neural network. We validated our approach on simulated and experimental data.  more » « less
Award ID(s):
2053080
PAR ID:
10180513
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
45
Issue:
16
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 4400
Size(s):
Article No. 4400
Sponsoring Org:
National Science Foundation
More Like this
  1. Amorphous tantala ( T a 2 O 5 ) thin films were deposited by reactive ion beam sputtering with simultaneous low energy assist A r + or A r + / O 2 + bombardment. Under the conditions of the experiment, the as-deposited thin films are amorphous and stoichiometric. The refractive index and optical band gap of thin films remain unchanged by ion bombardment. Around 20% improvement in room temperature mechanical loss and 60% decrease in absorption loss are found in samples bombarded with 100-eV A r + . A detrimental influence from low energy O 2 + bombardment on absorption loss and mechanical loss is observed. Low energy A r + bombardment removes excess oxygen point defects, while O 2 + bombardment introduces defects into the tantala films. 
    more » « less
  2. In this Letter, the electron-blocking-layer (EBL)-free AlGaN ultraviolet (UV) light-emitting diodes (LEDs) using a strip-in-a-barrier structure have been proposed. The quantum barrier (QB) structures are systematically engineered by integrating a 1 nm intrinsic A l x G a ( 1 −<#comment/> x ) N strip into the middle of QBs. The resulted structures exhibit significantly reduced electron leakage and improved hole injection into the active region, thus generating higher carrier radiative recombination. Our study shows that the proposed structure improves radiative recombination by ∼<#comment/> 220 %<#comment/> , reduces electron leakage by ∼<#comment/> 11 times, and enhances optical power by ∼<#comment/> 225 %<#comment/> at 60 mA current injection compared to a conventional AlGaN EBL LED structure. Moreover, the EBL-free strip-in-a-barrier UV LED records the maximum internal quantum efficiency (IQE) of ∼<#comment/> 61.5 %<#comment/> which is ∼<#comment/> 72 %<#comment/> higher, and IQE droop is ∼<#comment/> 12.4 %<#comment/> , which is ∼<#comment/> 333 %<#comment/> less compared to the conventional AlGaN EBL LED structure at ∼<#comment/> 284.5 n m wavelength. Hence, the proposed EBL-free AlGaN LED is the potential solution to enhance the optical power and produce highly efficient UV emitters. 
    more » « less
  3. The mid-IR spectroscopic properties of E r 3 + doped low-phonon C s C d C l 3 and C s P b C l 3 crystals grown by the Bridgman technique have been investigated. Using optical excitations at ∼<#comment/> 800 n m and ∼<#comment/> 660 n m , both crystals exhibited IR emissions at ∼<#comment/> 1.55 , ∼<#comment/> 2.75 , ∼<#comment/> 3.5 , and ∼<#comment/> 4.5 µ<#comment/> m at room temperature. The mid-IR emission at 4.5 µm, originating from the 4 I 9 / 2 →<#comment/> 4 I 11 / 2 transition, showed a long emission lifetime of ∼<#comment/> 11.6 m s for E r 3 + doped C s C d C l 3 , whereas E r 3 + doped C s P b C l 3 exhibited a shorter lifetime of ∼<#comment/> 1.8 m s . The measured emission lifetimes of the 4 I 9 / 2 state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the 4 I 9 / 2 →<#comment/> 4 I 11 / 2 transition in E r 3 + doped C s C d C l 3 and C s P b C l 3 were determined to be ∼<#comment/> 0.14 ×<#comment/> 10 −<#comment/> 20 c m 2 and ∼<#comment/> 0.41 ×<#comment/> 10 −<#comment/> 20 c m 2 , respectively. The results of Judd–Ofelt analysis are presented and discussed. 
    more » « less
  4. In this paper, deep ultraviolet AlGaN light-emitting diodes (LEDs) with a novel double-sided step graded superlattice (DSGS) electron blocking layer (EBL) instead of a conventional EBL have been proposed for ∼<#comment/> 254 n m wavelength emission. The enhanced carrier transport in the DSGS structure results in reduced electron leakage into the p -region, improved hole activation and hole injection, and enhanced output power and external quantum efficiency. The calculations show that output power of the DSGS structure is ∼<#comment/> 3.56 times higher and electron leakage is ∼<#comment/> 12 times lower, compared to the conventional structure. Moreover, the efficiency droop at 60 mA in the DSGS LED was found to be ∼<#comment/> 9.1 %<#comment/> , which is ∼<#comment/> 4.5 times lower than the regular LED structure. 
    more » « less
  5. Metasurfaces with dynamic optical performance have the potential to enable a broad range of applications. We computationally investigate the potential of dielectric Huygens metasurfaces, supporting both electric and magnetic dipole resonances, as a candidate platform for dynamic tuning. The asymmetric response of the two dipole resonances to changes in geometric and material parameters, and the potential for separate control of amplitude and phase, is analyzed. A review of dynamic materials, and their promise and limitations for use in dynamic Huygens metasurfaces, is discussed. Vanadium dioxide ( V O 2 ) is recognized as a singularly interesting material, due to its variable refractive index and optical absorption in response to several stimuli. Transmitted phase modulation of ±<#comment/> π<#comment/> is computationally demonstrated as a function of decaying resonance utilizing only the first 5% of the insulator-metal transition, corresponding to a temperature change of <<#comment/> 10 ∘<#comment/> C . As another case study utilizing asymmetric resonance tuning in response to changing incidence angle, phase modulation ( 2 π<#comment/> range for reflected light and ><#comment/> 1.5 π<#comment/> for transmitted light) and amplitude modulation (from R = 1 to T = 1 ) are demonstrated using a simple silicon metasurface with varying incident angle within a range of ∼<#comment/> 15 ∘<#comment/> on two axes. A promising implementation within a micro-electromechanical system (MEMS)-based spatial light modulator, similar to conventional digital micromirror devices, is discussed. 
    more » « less