Abstract Exciton polaron is a hypothetical many-body quasiparticle that involves an exciton dressed with a polarized electron-hole cloud in the Fermi sea. It has been evoked to explain the excitonic spectra of charged monolayer transition metal dichalcogenides, but the studies were limited to the ground state. Here we measure the reflection and photoluminescence of monolayer MoSe2and WSe2gating devices encapsulated by boron nitride. We observe gate-tunable exciton polarons associated with the 1 s–3 s exciton Rydberg states. The ground and excited exciton polarons exhibit comparable energy redshift (15~30 meV) from their respective bare excitons. The robust excited states contradict the trion picture because the trions are expected to dissociate in the excited states. When the Fermi sea expands, we observe increasingly severe suppression and steep energy shift from low to high exciton-polaron Rydberg states. Their gate-dependent energy shifts go beyond the trion description but match our exciton-polaron theory. Our experiment and theory demonstrate the exciton-polaron nature of both the ground and excited excitonic states in charged monolayer MoSe2and WSe2.
more »
« less
Controlling exciton transport in monolayer MoSe 2 by dielectric screening
Due to their atomic thinness with reduced dielectric screening, two-dimensional materials can possess a stable excitonic population at room temperature. This is attractive for future excitonic devices, where excitons are used to carry energy or information. In excitonic devices, controlling transport of the charge-neutral excitons is a key element. Here we show that exciton transport in a MoSe 2 monolayer semiconductor can be effectively controlled by dielectric screening. A MoSe 2 monolayer was partially covered with a hexagonal boron nitride flake. Photoluminescence measurements showed that the exciton energy in the covered region is about 12 meV higher than that in the uncovered region. Spatiotemporally resolved differential reflection measurements performed at the junction between the two regions revealed that this energy offset is sufficient to drive excitons across the junction for about 50 ps over a distance of about 200 nm. These results illustrate the feasibility of using van der Waals dielectric engineering to control exciton transport and contribute to understanding the effects of the dielectric environment on the electronic and optical properties of two-dimensional semiconductors.
more »
« less
- Award ID(s):
- 1505852
- PAR ID:
- 10180860
- Date Published:
- Journal Name:
- Nanoscale Horizons
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2055-6756
- Page Range / eLocation ID:
- 139 to 143
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tightly bound electron-hole pairs (excitons) hosted in atomically-thin semiconductors have emerged as prospective elements in optoelectronic devices for ultrafast and secured information transfer. The controlled exciton transport in such excitonic devices requires manipulating potential energy gradient of charge-neutral excitons, while electrical gating or nanoscale straining have shown limited efficiency of exciton transport at room temperature. Here, we report strain gradient induced exciton transport in monolayer tungsten diselenide (WSe2) across microns at room temperature via steady-state pump-probe measurement. Wrinkle architecture enabled optically-resolvable local strain (2.4%) and energy gradient (49 meV/μm) to WSe2. We observed strain gradient induced flux of high-energy excitons and emission of funneled, low-energy excitons at the 2.5 μm-away pump point with nearly 45% of relative emission intensity compared to that of excited excitons. Our results strongly support the strain-driven manipulation of exciton funneling in two-dimensional semiconductors at room temperature, opening up future opportunities of 2D straintronic exciton devices.more » « less
-
Charge-transfer excitons are formed by photoexcited electrons and holes following charge transfer across a heterojunction. They are important quasiparticles for optoelectronic applications of semiconducting heterostructures. The newly developed two-dimensional heterostructures provide a new platform to study these excitons. We report spatially and temporally resolved transient absorption measurements on the dynamics of charge-transfer excitons in a MoS 2 /WS 2 /MoSe 2 trilayer heterostructure. We observed a non-classical lateral diffusion process of charge-transfer excitons with a decreasing diffusion coefficient. This feature suggests that hot charge-transfer excitons with large kinetic energies are formed and their cooling process persists for about 100 ps. The long energy relaxation time of excitons in the trilayer compared to its monolayer components is attributed to the reduced carrier and phonon scattering due to the dielectric screening effect in the trilayer. Our results help develop an in-depth understanding of the dynamics of charge-transfer excitons in two-dimensional heterostructures.more » « less
-
Understanding excitonic dynamics in two-dimensional semiconducting transition metal dichalcogenides is important for developing their optoelectronic applications. Recently, transient absorption techniques based on resonant excitonic absorption have been used to study various aspects of excitonic dynamics in these materials. The transient absorption in such measurements originates from phase-space state filling, bandgap renormalization, or screening effects. Here we report a new method to probe excitonic dynamics based on exciton intraband absorption. In this Drude-like process, probe photons are absorbed by excitons in their intraband excitation to higher energy states, causing a transient absorption signal. Although the magnitude of the transient absorption is lower than that of the resonant techniques, the new method is less restrictive on the selection of probe wavelength, has a larger linear range, and can provide complementary information on photocarrier dynamics. Using the WS 2 monolayer and bulk samples as examples, we show that the new method can probe exciton–exciton annihilation at high densities and reveal exciton formation processes. We also found that the exciton intraband absorption cross section of the WS 2 monolayer is on the order of 10 −18 cm 2 .more » « less
-
The optical spectra of transition metal dichalcogenide monolayers are dominated by excitons and trions. Here, we establish the dependence of these optical transitions on the disorder from hyperspectral imaging of h-BN encapsulated monolayer MoSe2. While both exciton and trion energies vary spatially, these two quantities are almost perfectly correlated, with spatial variation in the trion binding energy of only ∼0.18 meV. In contrast, variation in the energy splitting between the two lowest energy exciton states is one order of magnitude larger at ∼1.7 meV. Statistical analysis and theoretical modeling reveal that disorder results from dielectric and bandgap fluctuations, not electrostatic fluctuations. Our results shed light on disorder in high quality TMDC monolayers, its impact on optical transitions, and the many-body nature of excitons and trions.more » « less
An official website of the United States government

