skip to main content

Title: Integrating Covariational Reasoning and Technology into the Teaching and Learning of the Greenhouse Effect
This research study was designed to evaluate the extent and the ways in which sixth-grade students developed their reasoning about the greenhouse effect and covariation as a result of their engagement with an instructional module that seamlessly integrates environmental science, mathematics, and technology. Quantitative and qualitative data were obtained from a design experiment in two sixth-grade classrooms and were compared to the data from a control group of students in a third sixth-grade classroom. The results from the quantitative analysis indicated that students in the treatment group demonstrated a greater development than the control group. The findings from the qualitative analysis illustrated that students developed sophisticated forms of reasoning about the greenhouse effect and covariation through their engagement with dynamic simulations and careful task design that prompted students to explore the covariational relationships underlying the science of the greenhouse effect. We consider the design of this instructional module to be valuable for future efforts to develop integrated science, technology, engineering, and mathematics (STEM) modules.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Mathematics Education
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Integrating mathematics content into science usually plays a supporting role, where students use their existing mathematical knowledge for solving science tasks without exhibiting any new mathematical meanings during the process. To help students explore the reciprocal relationship between math and science, we designed an instructional module that prompted them to reason covariationally about the quantities involved in the phenomenon of the gravitational force. The results of a whole-class design experiment with sixth-grade students showed that covariational reasoning supported students’ understanding of the phenomenon of gravity. Also, the examination of the phenomenon of gravity provided a constructive space for students to construct meanings about co-varying quantities. Specifically, students reasoned about the change in the magnitudes and values of mass, distance, and gravity as those changed simultaneously as well as the multiplicative change of these quantities as they changed in relation to each other. They also reasoned multivariationally illustrating that they coordinated mass and distance working together to define the gravitational force. Their interactions with the design, which included the tool, tasks, representations, and questioning, showed to be a structuring factor in the formation and reorganization of meanings that students exhibited. Thus, this study illustrates the type of design activity that provided a constructive space for students’ forms of covariational reasoning in the context of gravity. This design can be used to develop other STEM modules that integrate scientific phenomena with covariational reasoning through technology. 
    more » « less
  2. This work-in-progress paper shares findings of the early stage of a 3-year research funded by the National Science Foundation. The major aim of the project is to advance engineering and mathematics (EM) education theory and practice related to students’ self-regulation of cognition and motivation skills during problem-solving activities. The self-regulation includes students’ metacognitive knowledge about task (MKT) and self-regulation of cognition (SRC). The motivational component of self-regulation (SRM) includes self-control of the motivation needed to maintain the level of engagement and deliberate practice necessary for scientific thinking and reasoning. To be effective problem-solvers, students must understand the relationship between the MKT, SRC and SRM throughout the problem-solving activities. Four research questions will guide the research: (1) How do students perceive their self-regulation of cognition (SRC) and motivation (SRM) skills for generic problem-solving activities in EM courses; (2) How does students’ metacognitive knowledge about problem-solving tasks (MKT) inform their Task interpretation?; (3) How do students’ SRC and SRM dynamically evolve?; and (4) How do students’ SRC and SRM reflect their perceptions of self-regulation of cognition and motivation for generic EM problemsolving activities? A sequential mixed-methods research design involving quantitative and qualitative methods are used to develop complementary coarse- and fine-grained understandings of undergraduate students’ SRC and SRM during academic problem-solving activities. Two 2nd year EM courses: Engineering Statics, and Ordinary Differential Equations were purposefully selected for the contexts of the study. One hundred forty two students from both courses were invited and participated in quantitative data collection using two validated surveys during spring 2022 semester. Later in the semester, qualitative data will be generated with twenty students in both courses through one-on-one interviews with students and course instructors, think-aloud protocols with students, and classroom observations. Coarse-grained understandings of students’ SRC and SRM are currently developed through analysis of quantitative data collected using self-report surveys (i.e., BRoMS and PMI). Fine-grained understandings of students’ SRC and SRM will be developed through analysis of qualitative data gathered via one-on-one interviews, think-aloud protocols, classroom observations, and course artifacts gathered as students engage in EM problem-solving activities. 
    more » « less
  3. We designed an instructional module that seamlessly integrates mathematics, environmental science, and technology to help students think critically about climate change. The results from a design experiment in a sixth-grade classroom show that our tasks not only enhanced students' covariational reasoning in mathematics but also helped students identify the different traits of climate change they encounter every day in the news media. 
    more » « less
  4. Instructional designs that include two or more artifacts (digital manipulatives, tables, graphs) have shown to support students’ development of reasoning about covarying quantities. However, research often neglects how this development occurs from the student point of view during the interactions with these artifacts. An analysis from this lens could significantly justify claims about what designs really support students’ covariational reasoning. Our study makes this contribution by examining the “messiness” of students’ transitions as they interact with various artifacts that represent the same covariational situation. We present data from a design experiment with a pair of sixth-grade students who engaged with the set of artifacts we designed (simulation, table, and graph) to explore quantities that covary. An instrumental genesis perspective is followed to analyze students’ transitions from one artifact to the next. We utilize the distinction between static and emergent shape thinking to make inferences about their reorganizations of reasoning as they (re-)form a system of instruments that integrates previously developed instruments. Our findings provide an insight into the nature of the synergy of artifacts that offers a constructive space for students to shape and reorganize their meanings about covarying quantities. Specifically, we propose different subcategories of complementarities and antagonisms between artifacts that have the potential to make this synergy productive. 
    more » « less
  5. Abstract

    Integrated approaches to teaching science, technology, engineering, and mathematics (STEM) are increasingly being implemented in elementary and middle school classrooms, and despite a variety of conceptions of integrated STEM, researchers agree that small group activities and teamwork play a central role in STEM learning. However, little is known about how students participate in the small group portions of integrated STEM curricular units. In this study, a microvideo ethnography framed within activity theory was used to examine small group interactions among sixth‐grade students completing integrated STEM activities related to the properties of light. Students working in three different small groups (all‐girl, all‐boy, and mixed‐gender) were included in the analysis. Findings highlight differences in the activity systems across activity type (science vs. engineering) and across small groups, with students focusing on different objectives for completing STEM activities, utilizing different tools as they sought to reach their objectives, and dividing labor differently. Findings from this study suggest that these students, and girls in particular, were less prepared to navigate open‐ended engineering activities than highly structured science activities. Theoretical and practical implications for curriculum development and pedagogical strategies are discussed.

    more » « less