skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimizing the orbital occupation in the multiple minima problem of magnetic materials from the metaheuristic firefly algorithm
We present the use and implementation of the firefly algorithm to help in scanning the multiple metastable minima of orbital occupations in density functional theory (DFT) plus Hubbard U correction and to identify the ground state occupations in strongly correlated materials. We show the application of this implementation with the Abinit code on KCoF 3 and UO 2 crystals, which are typical d and f electron systems with numerous occupation minima. We demonstrate the validity and performance of the method by comparing with previous methodologies. The method is general and can be applied to any code using constrained occupation matrices.  more » « less
Award ID(s):
1740111
PAR ID:
10185628
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
21
Issue:
39
ISSN:
1463-9076
Page Range / eLocation ID:
21932 to 21941
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Occupations, like many other social systems, are hierarchical. They evolve with other elements within the work ecosystem including technology and skills. This paper investigates the relationships among these elements using an approach that combines network theory and modular systems theory. A new method of using work related data to build occupation networks and theorize occupation evolution is proposed. Using this technique, structural properties of occupations are discovered by way of community detection on a knowledge network built from labor statistics, based on more than 900 occupations and 18,000 tasks. The occupation networks are compared across the work ecosystem as well as over time to understand the interdependencies between task components and the coevolution of occupation, tasks, technology, and skills. In addition, a set of conjectures are articulated based on the observations made from occupation structure comparison and change over time. 
    more » « less
  2. Amavilah, Voxi Heinrich (Ed.)
    BackgroundThe fast-changing labor market highlights the need for an in-depth understanding of occupational mobility impacted by technological change. However, we lack a multidimensional classification scheme that considers similarities of occupations comprehensively, which prevents us from predicting employment trends and mobility across occupations. This study fills the gap by examining employment trends based on similarities between occupations. MethodWe first demonstrated a new method that clusters 756 occupation titles based on knowledge, skills, abilities, education, experience, training, activities, values, and interests. We used the Principal Component Analysis to categorize occupations in the Standard Occupational Classification, which is grouped into a four-level hierarchy. Then, we paired the occupation clusters with the occupational employment projections provided by the U.S. Bureau of Labor Statistics. We analyzed how employment would change and what factors affect the employment changes within occupation groups. Particularly, we specified factors related to technological changes. ResultsThe results reveal that technological change accounts for significant job losses in some clusters. This poses occupational mobility challenges for workers in these jobs at present. Job losses for nearly 60% of current employment will occur in low-skill, low-wage occupational groups. Meanwhile, many mid-skilled and highly skilled jobs are projected to grow in the next ten years. ConclusionOur results demonstrate the utility of our occupational classification scheme. Furthermore, it suggests a critical need for skills upgrading and workforce development for workers in declining jobs. Special attention should be paid to vulnerable workers, such as older individuals and minorities. 
    more » « less
  3. Automation continues to be a disruptive force in the workforce. In particular, new automated technologies are projected to replace many mid-skill jobs, potentially displacing millions of workers. Career planning agencies and other organizations can help support workers if they are able to effectively identify optimal transition occupations for displaced workers. We drew upon the 24.2 Occupational Information Network (O*NET) Database to conduct two related studies that identify alternate occupations for truck drivers, who are at risk of job loss due to the adoption of autonomous vehicles. In Study 1, we statistically compared the jobs that we identified based on different search methods using O*NET classifications based on their similarity to the knowledge, skills, values, and interests held by truck drivers. In Study 2, we conducted a survey of truck drivers to evaluate their perceptions of the occupations identified as objectively similar to their occupation. Results indicate that optimal transition occupations may be identified by searching for occupations that share skills as well as the same work activities/industry as a given occupation. These findings hold further implications for career planning organizations and policymakers to ease workforce disruption due to automation. 
    more » « less
  4. As work changes, so does technology. The two coevolve as part of a work ecosystem. This paper suggests a way of plotting this coevolution by comparing the embeddings - high dimensional vector representations - of textual descriptions of tasks, occupations and technologies. Tight coupling between tasks and technologies - measured by the distances between vectors - are shown to be associated with high task importance. Moreover, tasks that are more prototypical in an occupation are more important. These conclusions were reached through an analysis of the 2020 data release of The Occupational Information Network (O*NET) from the U.S. Department of Labor on 967 occupations and 19,533 tasks. One occupation, journalism, is analyzed in depth, and conjectures are formed related to the ways technologies and tasks evolve through both design and exaptation. 
    more » « less
  5. Abstract Is AI disrupting jobs and creating unemployment? This question has stirred public concern for job stability and motivated studies assessing occupations’ automation risk. These studies used readily available employment and wage statistics to quantify occupational changes for employed workers. However, they did not directly examine unemployment dynamics primarily due to the lack of data across occupations, geography, and time. Here, we overcome this barrier using monthly occupation-level unemployment data from each US state’s unemployment insurance office from 2010 to 2020 to assess AI exposure models, job separations, and unemployment through a new measure called unemployment risk. We demonstrate that standard employment statistics are inadequate proxies for occupations’ unemployment risk and find that individual AI exposure models are poor predictors of occupations’ unemployment risk states’ total unemployment rates, and states’ total job separation rates. However, an ensemble approach exhibits substantial predictive power, accounting for an additional 18% of variation in unemployment risk across occupations, states, and time compared to a baseline model that controls for education, occupations’ skills, seasonality, and regional effects. These results suggest that competing models may capture different aspects of AI exposure and that automation shapes US unemployment. Our results demonstrate the power of occupation-specific job disruption data and that efforts using only one AI exposure score will misrepresent AI’s impact on the future of work. 
    more » « less