skip to main content


Title: An Event-driven Neuromorphic System with Biologically Plausible Temporal Dynamics
Driven by the expanse of Internet of Things (IoT) and Cyber-Physical Systems (CPS), there is an increasing demand to process streams of temporal data on embedded devices with limited energy and power resources. Among all potential solutions, neuromorphic computing with spiking neural networks (SNN) that mimic the behavior of brain, have recently been placed at the forefront. Encoding information into sparse and distributed spike events enables low-power implementations, and the complex spatial temporal dynamics of synapses and neurons enable SNNs to detect temporal pattern. However, most existing hardware SNN implementations use simplified neuron and synapse models ignoring synapse dynamic, which is critical for temporal pattern detection and other applications that require temporal dynamics. To adopt a more realistic synapse model in neuromorphic platform its significant computation overhead must be addressed. In this work, we propose an FPGA-based SNN with biologically realistic neuron and synapse for temporal information processing. An encoding scheme to convert continuous real-valued information into sparse spike events is presented. The event-driven implementation of synapse dynamic model and its hardware design that is optimized to exploit the sparsity are also presented. Finally, we train the SNN on various temporal pattern-learning tasks and evaluate its performance and efficiency as compared to rate-based models and artificial neural networks on different embedded platforms. Experiments show that our work can achieve 10X speed up and 196X gains in energy efficiency compared with GPU.  more » « less
Award ID(s):
1822165
NSF-PAR ID:
10188108
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spiking neural networks (SNNs) are positioned to enable spatio-temporal information processing and ultra-low power event-driven neuromorphic hardware. However, SNNs are yet to reach the same performances of conventional deep artificial neural networks (ANNs), a long-standing challenge due to complex dynamics and non-differentiable spike events encountered in training. The existing SNN error backpropagation (BP) methods are limited in terms of scalability, lack of proper handling of spiking discontinuities, and/or mismatch between the rate coded loss function and computed gradient. We present a hybrid macro/micro level backpropagation (HM2-BP) algorithm for training multi-layer SNNs. The temporal effects are precisely captured by the proposed spike-train level post-synaptic potential (S-PSP) at the microscopic level. The rate-coded errors are defined at the macroscopic level, computed and back-propagated across both macroscopic and microscopic levels. Different from existing BP methods, HM2-BP directly computes the gradient of the rate-coded loss function w.r.t tunable parameters. We evaluate the proposed HM2-BP algorithm by training deep fully connected and convolutional SNNs based on the static MNIST [14] and dynamic neuromorphic N-MNIST [26]. HM2-BP achieves an accuracy level of 99:49% and 98:88% for MNIST and N-MNIST, respectively, outperforming the best reported performances obtained from the existing SNN BP algorithms. Furthermore, the HM2-BP produces the highest accuracies based on SNNs for the EMNIST [3] dataset, and leads to high recognition accuracy for the 16-speaker spoken English letters of TI46 Corpus [16], a challenging spatio-temporal speech recognition benchmark for which no prior success based on SNNs was reported. It also achieves competitive performances surpassing those of conventional deep learning models when dealing with asynchronous spiking streams. 
    more » « less
  2. A new class of neuromorphic processors promises to provide fast and power-efficient execution of spiking neural networks with on-chip synaptic plasticity. This efficiency derives in part from the fine-grained parallelism as well as event-driven communication mediated by spatially and temporally sparse spike messages. Another source of efficiency arises from the close spatial proximity between synapses and the sites where their weights are applied and updated. This proximity of compute and memory elements drastically reduces expensive data movements but imposes the constraint that only local operations can be efficiently performed, similar to constraints present in biological neural circuits. Efficient weight update operations should therefore only depend on information available locally at each synapse as non-local operations that involve copying, taking a transpose, or normalizing an entire weight matrix are not efficiently supported by present neuromorphic architectures. Moreover, spikes are typically non-negative events, which imposes additional constraints on how local weight update operations can be performed. The Locally Competitive Algorithm (LCA) is a dynamical sparse solver that uses only local computations between non-spiking leaky integrator neurons, allowing for massively parallel implementations on compatible neuromorphic architectures such as Intel's Loihi research chip. It has been previously demonstrated that non-spiking LCA can be used to learn dictionaries of convolutional kernels in an unsupervised manner from raw, unlabeled input, although only by employing non-local computation and signed non-spiking outputs. Here, we show how unsupervised dictionary learning with spiking LCA (S-LCA) can be implemented using only local computation and unsigned spike events, providing a promising strategy for constructing self-organizing neuromorphic chips. 
    more » « less
  3. The explosion of “big data” applications imposes severe challenges of speed and scalability on traditional computer systems. As the performance of traditional Von Neumann machines is greatly hindered by the increasing performance gap between CPU and memory (“known as the memory wall”), neuromorphic computing systems have gained considerable attention. The biology-plausible computing paradigm carries out computing by emulating the charging/discharging process of neuron and synapse potential. The unique spike domain information encoding enables asynchronous event driven computation and communication, and hence has the potential for very high energy efficiency. This survey reviews computing models and hardware platforms of existing neuromorphic computing systems. Neuron and synapse models are first introduced, followed by the discussion on how they will affect hardware design. Case studies of several representative hardware platforms, including their architecture and software ecosystems, are further presented. Lastly we present several future research directions. 
    more » « less
  4. The recently discovered spatial-temporal information processing capability of bio-inspired Spiking neural networks (SNN) has enabled some interesting models and applications. However designing large-scale and high-performance model is yet a challenge due to the lack of robust training algorithms. A bio-plausible SNN model with spatial-temporal property is a complex dynamic system. Synapses and neurons behave as filters capable of preserving temporal information. As such neuron dynamics and filter effects are ignored in existing training algorithms, the SNN downgrades into a memoryless system and loses the ability of temporal signal processing. Furthermore, spike timing plays an important role in information representation, but conventional rate-based spike coding models only consider spike trains statistically, and discard information carried by its temporal structures. To address the above issues, and exploit the temporal dynamics of SNNs, we formulate SNN as a network of infinite impulse response (IIR) filters with neuron nonlinearity. We proposed a training algorithm that is capable to learn spatial-temporal patterns by searching for the optimal synapse filter kernels and weights. The proposed model and training algorithm are applied to construct associative memories and classifiers for synthetic and public datasets including MNIST, NMNIST, DVS 128 etc. Their accuracy outperforms state-of-the-art approaches.

     
    more » « less
  5. Spiking neural networks (SNNs) are well suited for spatio-temporal learning and implementations on energy-efficient event-driven neuromorphic processors. However, existing SNN error backpropagation (BP) methods lack proper handling of spiking discontinuities and suffer from low performance compared with the BP methods for traditional artificial neural networks. In addition, a large number of time steps are typically required to achieve decent performance, leading to high latency and rendering spike based computation unscalable to deep architectures. We present a novel Temporal Spike Sequence Learning Backpropagation (TSSL-BP) method for training deep SNNs, which breaks down error backpropagation across two types of inter-neuron and intra-neuron dependencies and leads to improved temporal learning precision. It captures inter-neuron dependencies through presynaptic firing times by considering the all-or-none characteristics of firing activities, and captures intra-neuron dependencies by handling the internal evolution of each neuronal state in time. TSSL-BP efficiently trains deep SNNs within a much shortened temporal window of a few steps while improving the accuracy for various image classification datasets including CIFAR10. 
    more » « less