skip to main content


Title: FairST: Equitable Spatial and Temporal Demand Prediction for New Mobility Systems
We present a fairness-aware model for predicting demand for new mobility systems. Our approach, called FairST, consists of 1D, 2D and 3D convolutions to learn the spatial-temporal dynamics of a mobility system, and fairness regularizers that guide the model to make equitable predictions. We propose two fairness metrics, region-based fairness gap (RFG) and individual-based fairness gap (IFG), that measure equity gaps between social groups for new mobility systems. Experimental results on two real-world datasets demonstrate the effectiveness of the proposed model: FairST not only reduces the fairness gap by more than 80%, but achieves better accuracy than state-of-the-art but fairness-oblivious methods including LSTMs, ConvLSTMs, and 3D CNN.  more » « less
Award ID(s):
1934405 1740996
NSF-PAR ID:
10188254
Author(s) / Creator(s):
;
Date Published:
Journal Name:
SIGSPATIAL '19: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
Volume:
November 2019
Page Range / eLocation ID:
552 to 555
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Emerging transportation modes, including car-sharing, bike-sharing, and ride-hailing, are transforming urban mobility yet have been shown to reinforce socioeconomic inequity. These services rely on accurate demand prediction, but the demand data on which these models are trained reflect biases around demographics, socioeconomic conditions, and entrenched geographic patterns. To address these biases and improve fairness, we present FairST, a fairness-aware demand prediction model for spatiotemporal urban applications, with emphasis on new mobility. We use 1D (time-varying, space-constant), 2D (space-varying, time-constant) and 3D (both time- and space-varying) convolutional branches to integrate heterogeneous features, while including fairness metrics as a form of regularization to improve equity across demographic groups. We propose two spatiotemporal fairness metrics, region-based fairness gap (RFG), applicable when demographic information is provided as a constant for a region, and individual-based fairness gap (IFG), applicable when a continuous distribution of demographic information is available. Experimental results on bike share and ride share datasets show that FairST can reduce inequity in demand prediction for multiple sensitive attributes (i.e. race, age, and education level), while achieving better accuracy than even state-of-the-art fairness-oblivious methods. 
    more » « less
  2. Recent years have witnessed increasing concerns towards unfair decisions made by machine learning algorithms. To improve fairness in model decisions, various fairness notions have been proposed and many fairness-aware methods are developed. However, most of existing definitions and methods focus only on single-label classification. Fairness for multi-label classification, where each instance is associated with more than one labels, is still yet to establish. To fill this gap, we study fairness-aware multi-label classification in this paper. We start by extending Demographic Parity (DP) and Equalized Opportunity (EOp), two popular fairness notions, to multi-label classification scenarios. Through a systematic study, we show that on multi-label data, because of unevenly distributed labels, EOp usually fails to construct a reliable estimate on labels with few instances. We then propose a new framework named Similarity s-induced Fairness (sγ -SimFair). This new framework utilizes data that have similar labels when estimating fairness on a particular label group for better stability, and can unify DP and EOp. Theoretical analysis and experimental results on real-world datasets together demonstrate the advantage of sγ -SimFair over existing methods on multi-label classification tasks.

     
    more » « less
  3. Traditionally, multi-tenant cloud and edge platforms use fair-share schedulers to fairly multiplex resources across applications. These schedulers ensure applications receive processing time proportional to a configurable share of the total time. Unfortunately, enforcing time-fairness across applications often violates energy-fairness, such that some applications consume more than their fair share of energy. This occurs because applications either do not fully utilize their resources or operate at a reduced frequency/voltage during their time-slice. The problem is particularly acute for machine learning (ML) applications using GPUs, where model size largely dictates utilization and energy usage. Enforcing energy-fairness is also important since energy is a costly and limited resource. For example, in cloud platforms, energy dominates operating costs and is limited by the power delivery infrastructure, while in edge platforms, energy is often scarce and limited by energy harvesting and battery constraints. To address the problem, we define the notion of Energy-Time Fairness (ETF), which enables a configurable tradeoff between energy and time fairness, and then design a scheduler that enforces it. We show that ETF satisfies many well-accepted fairness properties. ETF and the new tradeoff it offers are important, as some applications, especially ML models, are time/latency-sensitive and others are energy-sensitive. Thus, while enforcing pure energy-fairness starves time/latency-sensitive applications (of time) and enforcing pure time-fairness starves energy-sensitive applications (of energy), ETF is able to mind the gap between the two. We implement an ETF scheduler, and show that it improves fairness by up to 2x, incentivizes energy efficiency, and exposes a configurable knob to operate between energy- and time-fairness. 
    more » « less
  4. Data from the cellular network have been proved as one of the most promising way to understand large-scale human mobility for various ubiquitous computing applications due to the high penetration of cellphones and low collection cost. Existing mobility models driven by cellular network data suffer from sparse spatial-temporal observations because user locations are recorded with cellphone activities, e.g., calls, text, or internet access. In this paper, we design a human mobility recovery system called CellSense to take the sparse cellular billing data (CBR) as input and outputs dense continuous records to recover the sensing gap when using cellular networks as sensing systems to sense the human mobility. There is limited work on this kind of recovery systems at large scale because even though it is straightforward to design a recovery system based on regression models, it is very challenging to evaluate these models at large scale due to the lack of the ground truth data. In this paper, we explore a new opportunity based on the upgrade of cellular infrastructures to obtain cellular network signaling data as the ground truth data, which log the interaction between cellphones and cellular towers at signal levels (e.g., attaching, detaching, paging) even without billable activities. Based on the signaling data, we design a system CellSense for human mobility recovery by integrating collective mobility patterns with individual mobility modeling, which achieves the 35.3% improvement over the state-of-the-art models. The key application of our recovery model is to take regular sparse CBR data that a researcher already has, and to recover the missing data due to sensing gaps of CBR data to produce a dense cellular data for them to train a machine learning model for their use cases, e.g., next location prediction. 
    more » « less
  5. Current forest monitoring technologies including satellite remote sensing, manned/piloted aircraft, and observation towers leave uncertainties about a wildfire’s extent, behavior, and conditions in the fire’s near environment, particularly during its early growth. Rapid mapping and real-time fire monitoring can inform in-time intervention or management solutions to maximize beneficial fire outcomes. Drone systems’ unique features of 3D mobility, low flight altitude, and fast and easy deployment make them a valuable tool for early detection and assessment of wildland fires, especially in remote forests that are not easily accessible by ground vehicles. In addition, the lack of abundant, well-annotated aerial datasets – in part due to unmanned aerial vehicles’ (UAVs’) flight restrictions during prescribed burns and wildfires – has limited research advances in reliable data-driven fire detection and modeling techniques. While existing wildland fire datasets often include either color or thermal fire images, here we present (1) a multi-modal UAV-collected dataset of dual-feed side-by-side videos including both RGB and thermal images of a prescribed fire in an open canopy pine forest in Northern Arizona and (2) a deep learning-based methodology for detecting fire and smoke pixels at accuracy much higher than the usual single-channel video feeds. The collected images are labeled to “fire” or “no-fire” frames by two human experts using side-by-side RGB and thermal images to determine the label. To provide context to the main dataset’s aerial imagery, the included supplementary dataset provides a georeferenced pre-burn point cloud, an RGB orthomosaic, weather information, a burn plan, and other burn information. By using and expanding on this guide dataset, research can develop new data-driven fire detection, fire segmentation, and fire modeling techniques. 
    more » « less