skip to main content


Title: Science with the Murchison Widefield Array: Phase I results and Phase II opportunities
Abstract The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together $60+$ programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories.  more » « less
Award ID(s):
1816492 1701440
NSF-PAR ID:
10189548
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Publications of the Astronomical Society of Australia
Volume:
36
ISSN:
1323-3580
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a calibration component for the Murchison Widefield Array All-Sky Virtual Observatory (MWA ASVO) utilising a newly developed PostgreSQL database of calibration solutions. Since its inauguration in 2013, the MWA has recorded over 34 petabytes of data archived at the Pawsey Supercomputing Centre. According to the MWA Data Access policy, data become publicly available 18 months after collection. Therefore, most of the archival data are now available to the public. Access to public data was provided in 2017 via the MWA ASVO interface, which allowed researchers worldwide to download MWA uncalibrated data in standard radio astronomy data formats (CASA measurement sets or UV FITS files). The addition of the MWA ASVO calibration feature opens a new, powerful avenue for researchers without a detailed knowledge of the MWA telescope and data processing to download calibrated visibility data and create images using standard radio astronomy software packages. In order to populate the database with calibration solutions from the last 6 yr we developed fully automated pipelines. A near-real-time pipeline has been used to process new calibration observations as soon as they are collected and upload calibration solutions to the database, which enables monitoring of the interferometric performance of the telescope. Based on this database, we present an analysis of the stability of the MWA calibration solutions over long time intervals. 
    more » « less
  2. ABSTRACT

    We present the discovery of highly collimated radio jets spanning a total of 355 kpc around the nearby elliptical galaxy NGC 2663, and the possible first detection of recollimation on kiloparsec scales. The small distance to the galaxy (∼28.5 Mpc) allows us to resolve portions of the jets to examine their structure. We combine multiwavelength data: radio observations by the Murchison Widefield Array (MWA), the Australian Square Kilometre Array Pathfinder (ASKAP) and the Australia Telescope Compact Array (ATCA), and X-ray data from Chandra, Swift, and SRG/eROSITA. We present intensity, rotation measure, polarization, spectral index, and X-ray environment maps. Regions of the southern jet show simultaneous narrowing and brightening, which can be interpreted as a signature of the recollimation of the jet by external, environmental pressure, though it is also consistent with intermittent active galactic nuclei or complex internal jet structure. X-ray data suggest that the environment is extremely poor; if the jet is indeed recollimating, the large recollimation scale (40 kpc) is consistent with a slow jet in a low-density environment.

     
    more » « less
  3. Abstract We present the discovery and timing of the young (age ∼28.6 kyr) pulsar PSR J0837–2454. Based on its high latitude ( b = 98) and dispersion measure (DM = 143 pc cm −3 ), the pulsar appears to be at a z -height of >1 kpc above the Galactic plane, but near the edge of our Galaxy. This is many times the observed scale height of the canonical pulsar population, which suggests this pulsar may have been born far out of the plane. If accurate, the young age and high z -height imply that this is the first pulsar known to be born from a runaway O/B star. In follow-up imaging with the Australia Telescope Compact Array (ATCA), we detect the pulsar with a flux density S 1400 = 0.18 ± 0.05 mJy. We do not detect an obvious supernova remnant around the pulsar in our ATCA data, but we detect a colocated, low-surface-brightness region of ∼15 extent in archival Galactic and Extragalactic All-sky MWA Survey data. We also detect colocated H α emission from the Southern H α Sky Survey Atlas. Distance estimates based on these two detections come out to ∼0.9 kpc and ∼0.2 kpc, respectively, both of which are much smaller than the distance predicted by the NE2001 model (6.3 kpc) and YMW model (>25 kpc) and place the pulsar much closer to the plane of the Galaxy. If the pulsar/remnant association holds, this result also highlights the inherent difficulty in the classification of transients as “Galactic” (pulsar) or “extragalactic” (fast radio burst) toward the Galactic anticenter based solely on the modeled Galactic electron contribution to a detection. 
    more » « less
  4. Abstract The Murchison Widefield Array (MWA) is an electronically steered low-frequency (<300 MHz) radio interferometer, with a ‘slew’ time less than 8 s. Low-frequency (∼100 MHz) radio telescopes are ideally suited for rapid response follow-up of transients due to their large field of view, the inverted spectrum of coherent emission, and the fact that the dispersion delay between a 1 GHz and 100 MHz pulse is on the order of 1–10 min for dispersion measures of 100–2000 pc/cm 3 . The MWA has previously been used to provide fast follow-up for transient events including gamma-ray bursts (GRBs), fast radio bursts (FRBs), and gravitational waves, using systems that respond to gamma-ray coordinates network packet-based notifications. We describe a system for automatically triggering MWA observations of such events, based on Virtual Observatory Event standard triggers, which is more flexible, capable, and accurate than previous systems. The system can respond to external multi-messenger triggers, which makes it well-suited to searching for prompt coherent radio emission from GRBs, the study of FRBs and gravitational waves, single pulse studies of pulsars, and rapid follow-up of high-energy superflares from flare stars. The new triggering system has the capability to trigger observations in both the regular correlator mode (limited to ≥0.5 s integrations) and using the Voltage Capture System (VCS, 0.1 ms integration) of the MWA and represents a new mode of operation for the MWA. The upgraded standard correlator triggering capability has been in use since MWA observing semester 2018B (July–Dec 2018), and the VCS and buffered mode triggers will become available for observing in a future semester. 
    more » « less
  5. Abstract We present a broadband radio study of the transient jets ejected from the black hole candidate X-ray binary MAXI J1535–571, which underwent a prolonged outburst beginning on 2017 September 2. We monitored MAXI J1535–571 with the Murchison Widefield Array (MWA) at frequencies from 119 to 186 MHz over six epochs from 2017 September 20 to 2017 October 14. The source was quasi-simultaneously observed over the frequency range 0.84–19 GHz by UTMOST (the Upgraded Molonglo Observatory Synthesis Telescope) the Australian Square Kilometre Array Pathfinder (ASKAP), the Australia Telescope Compact Array (ATCA), and the Australian Long Baseline Array (LBA). Using the LBA observations from 2017 September 23, we measured the source size to be $34\pm1$ mas. During the brightest radio flare on 2017 September 21, the source was detected down to 119 MHz by the MWA, and the radio spectrum indicates a turnover between 250 and 500 MHz, which is most likely due to synchrotron self-absorption (SSA). By fitting the radio spectrum with a SSA model and using the LBA size measurement, we determined various physical parameters of the jet knot (identified in ATCA data), including the jet opening angle ( $\phi_{\rm op} = 4.5\pm1.2^{\circ}$ ) and the magnetic field strength ( $B_{\rm s} = 104^{+80}_{-78}$ mG). Our fitted magnetic field strength agrees reasonably well with that inferred from the standard equipartition approach, suggesting the jet knot to be close to equipartition. Our study highlights the capabilities of the Australian suite of radio telescopes to jointly probe radio jets in black hole X-ray binaries via simultaneous observations over a broad frequency range, and with differing angular resolutions. This suite allows us to determine the physical properties of X-ray binary jets. Finally, our study emphasises the potential contributions that can be made by the low-frequency part of the Square Kilometre Array (SKA-Low) in the study of black hole X-ray binaries. 
    more » « less