Vesicles are important surrogate structures made up of multiple phospholipids and cholesterol distributed in the form of a lipid bilayer. Tubular vesicles can undergo pearling – i.e. formation of beads on the liquid thread akin to the Rayleigh–Plateau instability. Previous studies have inspected the effects of surface tension on the pearling instabilities of single-component vesicles. In this study, we perform a linear stability analysis on a multicomponent cylindrical vesicle. We solve the Stokes equations along with the Cahn–Hilliard equation to develop the linearized dynamic equations governing the vesicle shape and surface concentration fields. This helps us to show that multicomponent vesicles can undergo pearling, buckling and wrinkling even in the absence of surface tension, which is a significantly different result from studies on single-component vesicles. This behaviour arises due to the competition between the free energies of phase separation, line tension and bending for this multi-phospholipid system. We determine the conditions under which axisymmetric and non-axisymmetric modes are dominant, and supplement our results with an energy analysis that shows the sources for these instabilities. Lastly, we delve into a weakly nonlinear analysis where we solve the nonlinear Cahn–Hilliard equation in the weak deformation limit to understand how mode-mixing alters the late time dynamics of coarsening. We show that in many situations, the trends from our simulations qualitatively match recent experiments (Yanagisawaet al.,Phys. Rev. E, vol. 82, 2010, p. 051928).
more »
« less
Competition and Complexity in Amphiphilic Polymer Morphology
The strong functionalized Cahn–Hilliard equation models self assembly of amphiphilic polymers in solvent. It supports codimension one and two structures that each admit two classes of bifurcations: pearling, a short-wavelength in-plane modulation of interfacial width, and meandering, a long-wavelength instability that induces a transition to curve-lengthening flow. These two potential instabilities afford distinctive routes to changes in codimension and creation of non-codimensional defects such as end caps and Y-junctions. Prior work has characterized the onset of pearling, showing that it couples strongly to the spatially constant, temporally dynamic, bulk value of the chemical potential. We present a multiscale analysis of the competitive evolution of codimension one and two structures of amphiphilic polymers within the H−1 gradient flow of the strong Functionalized Cahn–Hilliard equation. Specifically we show that structures of each codimension transition from a curve lengthening to a curve shortening flow as the chemical potential falls through a corresponding critical value. The differences in these critical values quantify the competition between the morphologies of differing codimension for the amphiphilic polymer mass. We present a bifurcation diagram for the morphological competition and compare our results quantitatively to simulations of the full system and qualitatively to simulations of self-consistent mean field models and laboratory experiments. In particular we propose that the experimentally observed onset of morphological complexity arises from a transient passage through pearling instability while the associated flow is in the curve lengthening regime.
more »
« less
- Award ID(s):
- 1813203
- PAR ID:
- 10194744
- Date Published:
- Journal Name:
- Physica
- Volume:
- 400
- ISSN:
- 0167-2789
- Page Range / eLocation ID:
- 132144
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Reductions of the self-consistent mean field theory model of amphiphilic molecules in solvent can lead to a singular family of functionalized Cahn-Hilliard (FCH) energies. We modify these energies, mollifying the singularities to stabilize the computation of the gradient flows and develop a series of benchmark problems that emulate the “morphological complexity” observed in experiments. These benchmarks investigate the delicate balance between the rate of absorption of amphiphilic material onto an interface and a least energy mechanism to disperse the arriving mass. The re- sult is a trichotomy of responses in which two-dimensional interfaces either lengthen by a regularized motion against curvature, undergo pearling bifurcations, or split di- rectly into networks of interfaces. We evaluate a number of schemes that use second or- der backward differentiation formula (BDF2) type time stepping coupled with Fourier pseudo-spectral spatial discretization. The BDF2-type schemes are either based on a fully implicit time discretization with a preconditioned steepest descent (PSD) nonlin- ear solver or upon linearly implicit time discretization based on the standard implicit- explicit (IMEX) and the scalar auxiliary variable (SAV) approaches. We add an ex- ponential time differencing (ETD) scheme for comparison purposes.more » « less
-
In this paper we construct a novel discretization of the Cahn-Hilliard equation coupled with the Navier-Stokes equations. The Cahn-Hilliard equation models the separation of a binary mixture. We construct a very simple time integration scheme for simulating the Cahn-Hilliard equation, which is based on splitting the fourth-order equation into two second-order Helmholtz equations. We combine the Cahn-Hilliard equation with the Navier-Stokes equations to simulate phase separation in a two-phase fluid flow in two dimensions. The scheme conserves mass and momentum and exhibits consistency between mass and momentum, allowing it to be used with large density ratios. We introduce a novel discretization of the surface tension force from the phase-field variable that has finite support around the transition region. The model has a parameter that allows it to transition from a smoothed continuum surface force to a fully sharp interface formulation. We show that our method achieves second-order accuracy, and we compare our method to previous work in a variety of experiments.more » « less
-
We present a rigorous analysis of the transient evolution of nearly circular bilayer interfaces evolving under the thin interface limit, ε ≪ 1, of the mass preserving L2-gradient flow of the strong scaling of the functionalized Cahn–Hilliard equation. For a domain Ω ⊂ R2 we construct a bilayer manifold with boundary comprised of quasi-equilibria of the flow and a projection onto the manifold that associates functions u in an H2 tubular neighborhood of the manifold with an interface Γ embedded in Ω. The linearization of the flow about the manifold does not present a clear spectral separation of modes normal and tangential to the manifold. The dimension of the parameterization of the interfaces and the bilayer manifold controls both the normal coercivity of the manifold and the coupling between normal and tangential modes, both of which increase with this dimension. The key step in the analysis is the identification of a range of dimensions in which coercivity dominates the coupling, permitting the closure of the nonlinear estimates that establish the asymptotic stability of the manifold. Orbits originating in a thin, forward invariant, tubular neighborhood ultimately converge to an equilibrium associated to a circular interface. Projections of these orbits yield interfacial evolution equivalent at leading order to the regularized curve-lengthening motion characterized by normal motion against mean curvature, regularized by a higher order Willmore expression. The curve lengthening is driven by absorption of excess mass from the regions of Ω away from the interface, leading to high dimensional dynamics that are ill-posed in the ε → 0+ limit.more » « less
-
null (Ed.)We study analytically and numerically the minimizers for the Cahn-Hilliard energy functional with a symmetric quartic double-well potential and under a strong anchoring condition(i.e., the Dirichlet condition) on the boundary of an underlying bounded domain. We show a bifurcation phenomenon determined by the boundary value and a parameter that describes the thickness of a transition layer separating two phases of an underlying system of binary mixtures. For the case that the boundary value is exactly the average of the two pure phases, if the bifurcation parameter is larger than or equal to a critical value, then the minimizer is unique and is exactly the homogeneous state. Otherwise, there are exactly two symmetric minimizers. The critical bifurcation value is inversely proportional to the first eigenvalue of the negative Laplace operator with the zero Dirichlet boundary condition. For a boundary value that is larger (or smaller) than that of the average of the two pure phases, the symmetry is broken and there is only one minimizer. We also obtain the bounds and morphological properties of the minimizers under additional assumptions on the domain.Our analysis utilizes the notion of the Nehari manifold and connects it to the eigenvalue problem for the negative Laplacian with the homogeneous boundary condition. We numerically minimize the functional E by solving the gradient-flow equation of E, i.e., the Allen-Cahn equation, with the designated boundary conditions, and with random initial values. We present our numerical simulations and discuss them in the context of our analytical results.more » « less
An official website of the United States government

