skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spontaneous outflow efficiency of confined liquid in hydrophobic nanopores
The suspension of nanoporous particles in a nonwetting liquid provides a unique solution to the crux of superfluid, sensing, and energy conversion, yet is challenged by the incomplete outflow of intruded liquid out of nanopores for the system reusability. We report that a continuous and spontaneous liquid outflow from hydrophobic nanopores with high and stable efficiency can be achieved by regulating the confinement of solid–liquid interactions with functionalized nanopores or/and liquids. Full-scale molecular-dynamics simulations reveal that the grafted silyl chains on nanopore wall surfaces will promote the hydrophobic confinement of liquid molecules and facilitate the molecular outflow; by contrast, the introduction of ions in the liquid weakens the hydrophobic confinement and congests the molecular outflow. Both one-step and multistep well-designed quasistatic compression experiments on a series of nanopores/nonwetting liquid material systems have been performed, and the results confirm the outflow mechanism in remarkable agreement with simulations. This study offers a fundamental understanding of the outflow of confined liquid from hydrophobic nanopores, potentially useful for devising emerging nanoporous-liquid functional systems with reliable and robust reusability.  more » « less
Award ID(s):
1805451 1803695
PAR ID:
10195177
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
41
ISSN:
0027-8424
Page Range / eLocation ID:
p. 25246-25253
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we highlight the uniqueness of nanoporous film‐coated electrodes as electrochemical sensing platforms. Specifically, we focus on discussing electrodes coated with insulator‐based monolithic films comprising vertically‐oriented, rigid cylindrical nanopores of uniform diameters (2–200 nm). The electrode coating results in the formation of an array of recessed nanodisk electrodes, and thus we named them recessed nanodisk‐array electrodes (RNEs). We first summarize the properties of nanoporous films commonly used for RNE fabrication, including nanoporous anodic alumina membranes, track‐etched polymer membranes, block copolymer‐derived nanoporous films, and mesoporous silica films. Subsequently, we discuss representative works that take advantage of the uniform size/shape of the nanopores for enhancing electrochemical detection selectivity and sensitivity. RNE‐based sensors measure faradaic currents from redox‐active analytes or exogenously‐added electroactive species that penetrate through the nanopores, or those from redox‐active moieties tethered to the surface of the nanopores or underlying electrodes. The enhanced detection selectivity of these sensors is attributed to the preferential partitioning of analytes into the nanopores or steric/electrostatic exclusion of interfering species. In particular, the uniform sizes/shapes of RNE nanopores play key roles in their higher molecular sieving selectivity and also in the better control of the detection selectivity based on electrostatic/chemical interactions. The detection sensitivity of RNE‐based sensors can be improved by tailoring the chemical environments of the nanopores for analyte preconcentration or for steric/electrostatic manipulation of the dynamics of redox‐tagged binding moieties. These unique characteristics of RNEs, in addition to the mitigation of electrode fouling by the nanoporous films, will enable the development of pretreatment‐free electrochemical sensors for complex matrix solutions. 
    more » « less
  2. null (Ed.)
    Fluids confined in nanopores are ubiquitous in nature and technology. In recent years, the interest in confined fluids has grown, driven by research on unconventional hydrocarbon resources -- shale gas and shale oil, much of which are confined in nanopores. When fluids are confined in nanopores, many of their properties differ from those of the same fluid in the bulk. These properties include density, freezing point, transport coefficients, thermal expansion coefficient, and elastic properties. The elastic moduli of a fluid confined in the pores contribute to the overall elasticity of the fluid-saturated porous medium and determine the speed at which elastic waves traverse through the medium. Wave propagation in fluid-saturated porous media is pivotal for geophysics, as elastic waves are used for characterization of formations and rock samples. In this paper, we present a comprehensive review of experimental works on wave propagation in fluid-saturated nanoporous media, as well as theoretical works focused on calculation of compressibility of fluids in confinement. We discuss models that bridge the gap between experiments and theory, revealing a number of open questions that are both fundamental and applied in nature. While some results were demonstrated both experimentally and theoretically (e.g. the pressure dependence of compressibility of fluids), others were theoretically predicted, but not verified in experiments (e.g. linear scaling of modulus with the pore size). Therefore, there is a demand for the combined experimental-modeling studies on porous samples with various characteristic pore sizes. The extension of molecular simulation studies from simple model fluids to the more complex molecular fluids is another open area of practical interest. 
    more » « less
  3. Understanding the invasion of a liquid into porous structures is the foundation of the characterization of the porosity-related properties of materials and is also of fundamental importance in the design of porous solid–liquid enabled energy protection systems, yet whether solid pores deform has been unclear so far. Here, we present a competition mechanism between liquid infiltration and cell wall buckling deformation by investigating a liquid nanofoam (LN) system subjected to quasi-static compression. The critical buckling stress of the cell wall and the infiltration pressure of liquid invasion into nanopores are studied and correlated through numerical simulation and experimental validation to reveal the quantitative relationship between nanopore deformation and liquid invasion. The analysis shows that liquid infiltration occurs, independent of the axial buckling stress of the cell wall; in contrast, the nanopore collapses radially when the radial collapse pressure is lower than the pressure of liquid infiltration, preventing the liquid invasion. Comprehensive molecular dynamics (MD) simulations are performed and demonstrate the deformation behavior of nanopores and cell wall–liquid interactions in a broad range. Pressure-induced compression experiments on a silica-based LN system are carried out and validate these theoretical and MD results. 
    more » « less
  4. Polymer infiltration is studied in a bicontinuous, nanoporous gold (NPG) scaffold. For poly(2-vinylpyridine) (P2VP) with molecular weights (M_w) from 51k to 940k Da, infiltration is investigated in a NPG with fixed pore radius (R_p= 34 nm) under moderate confinement (Γ = R_g/R_p ) 0.18 to 0.78. The time for 80% infiltration (τ_(80%)) scales as M_w^1.43, similar to PS, but weaker than bulk behavior. Infiltration of P2VP is slower than PS due to stronger P2VP-wall interactions resulting in a physisorbed P2VP layer. This interpretation is supported by the similar scaling of τ_(80%) for P2VP and PS, as well as Molecular Dynamics (MD) simulations. Simulations show that infiltration time scales as M_w^1.43and that infiltration slows as the polymer-wall attraction increases. As M_w increases, the effective viscosity transitions from greater than to less than the bulk viscosity due to pore narrowing and a reduction entanglement density. These studies provide new insight for polymer behavior under confinement and a new route for preparing nanocomposites at high filler loadings. 
    more » « less
  5. Widespread use of methane-powered vehicles likely requires the development of efficient on-board methane storage systems. A novel concept for methane storage is the nanoporous microtank, which is based on a millimeter-sized nanoporous pellet (the core) surrounded by an ultrathin membrane (the shell). Mixture adsorption simulations in idealized pores indicate that by combining a pellet that features large, hydrophobic pores with a membrane featuring small, hydrophilic pores, it would be possible to trap a large amount of “pressurized” methane in the pellet while keeping the external pressure low. The methane would be trapped by sealing the surrounding membrane with the adsorption of a hydrophilic compound such as methanol. Additional simulations in over 2000 hypothesized metal–organic frameworks (MOFs) indicate that the above design concept could be exploited using real nanoporous materials. Structure–property relationships derived from these simulations indicate that MOFs suitable for the core (storing over 250 cc(STP) CH4 per cc) should have a pore size in the 12–14 Å range and linkers without appreciably hydrophilic moieties. On the other hand, MOFs suitable for the shell should have a pore size less than 9 Å and linkers with hydrophilic functional groups such as –CN, –NO 2 , –OH and –NH 2 . Simulation snapshots suggest that the hydrogen bonding between these groups and hydrophilic moieties of methanol would be critical for the sealing function. 
    more » « less