skip to main content


Title: Deep Neural Network-Based Guided Wave Damage Localization
Damage detection and localization remain challenging research areas in structural health monitoring. Guided wave-based methods that utilize signal processing tools (e.g., matched field processing and delay-and-sum localization) have enjoyed success in damage detection. To locate damage, such techniques rely on a model of wave propagation through materials. Measured data is then compared with these models to determine the origin of a wave. As a result, the analytical model and actual data may have a mismatch due to environmental variations or a lack of knowledge about the material. Deep neural networks are a class of machine learning algorithms that learn a non-linear functional mapping. The paper presents a deep neural network-based approach to damage localization. We use simulated data to assess the performance of localization frameworks under varying levels of noise and other uncertainty in our ultrasonic signals.  more » « less
Award ID(s):
1839704
NSF-PAR ID:
10195498
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proc. of the Review of Nondestructive Evaluation
Page Range / eLocation ID:
1-4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultrasonic guided waves are commonly used to localize structural damage in infrastructures such as buildings, airplanes, bridges. Damage localization can be viewed as an inverse problem. Physical model based techniques are popular for guided wave based damage localization. The performance of these techniques depend on the degree of faithfulness with which the physical model describes wave propagation. External factors such as environmental variations and random noise are a source of uncertainty in wave propagation. The physical modeling of uncertainty in an inverse problem is still a challenging problem. In this work, we propose a deep learning based model for robust damage localization in presence of uncertainty. Wave data with uncertainty is simulated to reflect variations due to external factors and Gaussian noise is added to reflect random noise in the environment. After evaluating the localization error on test data with uncertainty, we observe that the deep learning model trained with uncertainty can learn robust representations. The approach shows the potential for dealing with uncertainty in physical science problems using deep learning models. 
    more » « less
  2. Guided ultrasonic wave localization systems use spatially distributed sensor arrays and wave propagation models to detect and locate damage across a structure. Environmental and operational conditions, such as temperature or stress variations, introduce uncertainty into guided wave data and reduce the effectiveness of these localization systems. These uncertainties cause the models used by each localization algorithm to fail to match with reality. This paper addresses this challenge with an ensemble deep neural network that is trained solely with simulated data. Relative to delay-and-sum and matched field processing strategies, this approach is demonstrated to be more robust to temperature variations in experimental data. As a result, this approach demonstrates superior accuracy with small numbers of sensors and greater resilience to spatially nonhomogeneous temperature variations over time.

     
    more » « less
  3. Guided wave testing is a popular approach for monitoring the structural integrity of infrastructures. We focus on the primary task of damage detection, where signal processing techniques are commonly employed. The detection performance is affected by a mismatch between the wave propagation model and experimental wave data. External variations, such as temperature, which are difficult to model, also affect the performance. While deep learning models can be an alternative detection method, there is often a lack of real-world training datasets. In this work, we counter this challenge by training an ensemble of variational autoencoders only on simulation data with a wave physics-guided adversarial component. We set up an experiment with non-uniform temperature variations to test the robustness of the methods. We compare our scheme with existing deep learning detection schemes and observe superior performance on experimental data. 
    more » « less
  4. Large quantities of data which contain detailed condition information over an extended period of time should be utilized to prioritize infrastructure repairs. As the temporal and spatial resolution of monitoring data drastically increase by advances in sensing technology, structural health monitoring applications reach the thresholds of big data. Deep neural networks are ideally suited to use large representative training datasets to learn complex damage features. In the previous study of authors, a real-time deep learning platform was developed to solve damage detection and localization challenge. The network was trained by using simulated structural connection mimicking the real test object with a variety of loading cases, damage scenarios, and measurement noise levels for successful and robust diagnosis of damage. In this study, the proposed damage diagnosis platform is validated by using temporally and spatially dense data collected by Digital Image Correlation (DIC) from the specimen. Laboratory testing of the specimen with induced damage condition is performed to evaluate the performance and efficiency of damage detection and localization approach. 
    more » « less
  5. Damage diagnosis has been a challenging inverse problem in structural health monitoring. The main difficulty is characterizing the unknown relation between the measurements and damage patterns (i.e., damage indicator selection). Such damage indicators would ideally be able to identify the existence, location, and severity of damage. Therefore, this procedure requires complex data processing algorithms and dense sensor arrays, which brings computational intensity with it. To address this limitation, this paper introduces convolutional neural network (CNN), which is one of the major breakthroughs in image recognition, to the damage detection and localization problem. The CNN technique has the ability to discover abstract features and complex classifier boundaries that are able to distinguish various attributes of the problem. In this paper, a CNN topology was designed to classify simulated damaged and healthy cases and localize the damage when it exists. The performance of the proposed technique was evaluated through the finite-element simulations of undamaged and damaged structural connections. Samples were trained by using strain distributions as a consequence of various loads with several different crack scenarios. Completely new damage setups were introduced to the model during the testing process. Based on the findings of the proposed study, the damage diagnosis and localization were achieved with high accuracy, robustness, and computational efficiency. 
    more » « less