skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy-Efficient Adiabatic Circuits Using Transistor-Level Monolithic 3D Integration
Charge-recycling adiabatic circuits are recently receiving increased attention due to both high energy-efficiency and higher resistance against side-channel attacks. These characteristics make adiabatic circuits a promising technique for Internet-of-things based applications. One of the important limitations of adiabatic logic is the higher intra-cell interconnect capacitance due to differential outputs and cross-coupled pMOS transistors. Since energy consumption has quadratic dependence on capacitance in adiabatic circuits (unlike conventional static CMOS where dependence is linear), higher interconnect capacitance significantly degrades the overall power savings that can be achieved by adiabatic logic, particularly in nanoscale technologies. In this paper, monolithic 3D integrated adiabatic circuits are introduced where transistor-level monolithic 3D technology is used to implement adiabatic gates. A 45 nm two-tier Mono3D PDK is used to demonstrate the proposed approach. Monolithic inter-tier vias are leveraged to significantly reduce parasitic interconnect capacitance, achieving up to 47% reduction in power-delay product as compared to 2D adiabatic circuits in a 45 nm technology node.  more » « less
Award ID(s):
1717306
PAR ID:
10199028
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE International System-on-Chip Conference (SOCC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Approximate computing is a promising approach for error-tolerant applications running on the Internet of Things (IoT) edge devices to reduce power consumption. However, approximate computation is susceptible to side-channel attacks, such as attacks based on differential power analysis (DPA). Energy efficiency could be further enhanced by applying adiabatic logic in approximate edge computing while increasing its protection against the side-channel attacks. As a case study, we are presenting two approximate adders based on adiabatic logic to illustrate the benefits of approximate computation combined with adiabatic logic. The proposed approximate adders leverage the dual-rail property of adiabatic logic to minimize the overall size and further decrease energy consumption. In this article, the first design is True Sum Approximate Adder (TSAA), while the second design is True Carry-out Approximate Adder (TCAA). There are fewer transistors in adiabatic logic-based TSAA and TCAA compared to CMOS based accurate mirror adder (AMA). At 12.5 MHz operating frequency and 45 nm technology node, the adiabatic TSAA and TCAA achieved power savings of 95.4% and 95.48%, energy savings of 90.80%, and 90.96% in comparison with the standard CMOS AMA. We also show that both designs proposed are more secure against DPA attacks. 
    more » « less
  2. The tremendous growth in the number of Internet of Things (IoT) devices has increased focus on the energy efficiency and security of an IoT device. In this paper, we will present a design level, non-volatile adiabatic architecture for low-energy and Correlation Power Analysis (CPA) resistant IoT devices. IoT devices constructed with CMOS integrated circuits suffer from high dynamic energy and leakage power. To solve this, we look at both adiabatic logic and STT-MTJs (Spin Transfer Torque Magnetic Tunnel Junctions) to reduce both dynamic energy and leakage power. Furthermore, CMOS integrated circuits suffer from side-channel leakage making them insecure against power analysis attacks. We again look to adiabatic logic to design secure circuits with uniform power consumption, thus, defending against power analysis attacks. We have developed a hybrid adiabatic-MTJ architecture using two-phase adiabatic logic. We show that hybrid adiabatic-MTJ circuits are both low energy and secure when compared with CMOS circuits. As a case study, we have constructed one round of PRESENT and have shown energy savings of 64.29% at a frequency of 25 MHz. Furthermore, we have performed a correlation power analysis attack on our proposed design and determined that the key was kept hidden. 
    more » « less
  3. null (Ed.)
    The adaptation of the Internet-of-Things (IoT) for consumer electronics has enabled us to uplift everyday life. Low-power smart and secure computing devices are needed to sustain the expected growth of consumer IoT. Adiabatic switching is a modern approach that recycles the energy stored in load capacitance to save energy. Further, the cryptographic circuit designed using adiabatic switching is secure against the Correlation Power Analysis (CPA) attack in contrast to the same circuit designed using standard CMOS. In this paper, we propose 2-SPGAL, a 2-phase sinusoidal signal based clocking implementation of Symmetric Pass Gate Adiabatic Logic (SPGAL). As a case study, we simulated the design of PRESENT-80 (a lightweight cryptographic scheme) one round with an in-built Power Clock Generator (PCG) with 45nm technology. The 2-SPGAL shows on an average 82.76% and 67.35% better energy saving compared to standard CMOS, and 2-EE-SPFAL (another 2-phase adiabatic logic), respectively at a frequency range from 100 kHz to 25 MHz with a load of 1 fF. The 2-SPGAL has 16.78% savings of the number of transistors compared to 2-EE-SPFAL for implementation of one round PRESENT-80. Further, the CPA attacks reveal the key in standard CMOS, however, 2-SPGAL PRESENT-80 adiabatic logic design was successful to protect the key. 
    more » « less
  4. SIMON is a block cipher developed to provide flexible security options for lightweight hardware applications such as the Internet-of-things (IoT). Safeguarding such resource-constrained hardware from side-channel attacks poses a significant challenge. Adiabatic circuit operation has recently received attention for such applications due to ultra-low power consumption. In this work, a charge-based methodology is developed to mount a correlation power analysis (CPA) based side-channel attack to an adiabatic SIMON core. The charge-based method significantly reduces the attack complexity by reducing the required number of power samples by two orders of magnitude. The CPA results demonstrate that the required measurements-to-disclosure (MTD) to retrieve the secret key of an adiabatic SIMON core is 4× higher compared to a conventional static CMOS based implementation. The effect of increase in the target signal load capacitance on the MTD is also investigated. It is observed that the MTD can be reduced by half if the load driven by the target signal is increased by 2× for an adiabatic SIMON, and by 5× for a static CMOS based SIMON. This sensitivity to target signal capacitance of the adiabatic SIMON can pose a serious concern by facilitating a more efficient CPA attack. 
    more » « less
  5. Many IoT applications require high computational performance and flexibility, and FPGA is a promising candidate. However, increased computation power results in higher energy dissipation, and energy efficiency is one of the key concerns for IoT applications. In this paper, we explore adiabatic logic for designing an energy efficient configurable logic block (CLB) and compare it to the CMOS counterpart. The simulation results show that the proposed adiabatic-logic-based look-up table (LUT) has significant energy savings for the frequency range of 1 MHz to 40 MHz, and the least energy savings is at 40 MHz, which is 92.94% energy reduction compared to its CMOS counterpart. Further, the three proposed adiabatic-logic-based memory cells are 14T, 16T, and 12T designs with at least 88.2%, 84.2%, and 87.2% energy savings. Also, we evaluated the performance of the proposed CLBs using an adiabatic-logic-based LUT (AL-LUT) interfacing with adiabatic-logic-based memory cells. The proposed design shows significant energy reduction compared to a CMOS LUT interface with SRAM cells for different frequencies; the energy savings are at least 91.6% for AL-LUT 14T, 89.7% for AL-LUT 16T, and 91.3% AL-LUT 12T. 
    more » « less