skip to main content


Search for: All records

Award ID contains: 1717306

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SIMON is a block cipher developed to provide flexible security options for lightweight hardware applications such as the Internet-of-things (IoT). Safeguarding such resource-constrained hardware from side-channel attacks poses a significant challenge. Adiabatic circuit operation has recently received attention for such applications due to ultra-low power consumption. In this work, a charge-based methodology is developed to mount a correlation power analysis (CPA) based side-channel attack to an adiabatic SIMON core. The charge-based method significantly reduces the attack complexity by reducing the required number of power samples by two orders of magnitude. The CPA results demonstrate that the required measurements-to-disclosure (MTD) to retrieve the secret key of an adiabatic SIMON core is 4× higher compared to a conventional static CMOS based implementation. The effect of increase in the target signal load capacitance on the MTD is also investigated. It is observed that the MTD can be reduced by half if the load driven by the target signal is increased by 2× for an adiabatic SIMON, and by 5× for a static CMOS based SIMON. This sensitivity to target signal capacitance of the adiabatic SIMON can pose a serious concern by facilitating a more efficient CPA attack. 
    more » « less
  2. Charge-recycling adiabatic circuits are recently receiving increased attention due to both high energy-efficiency and higher resistance against side-channel attacks. These characteristics make adiabatic circuits a promising technique for Internet-of-things based applications. One of the important limitations of adiabatic logic is the higher intra-cell interconnect capacitance due to differential outputs and cross-coupled pMOS transistors. Since energy consumption has quadratic dependence on capacitance in adiabatic circuits (unlike conventional static CMOS where dependence is linear), higher interconnect capacitance significantly degrades the overall power savings that can be achieved by adiabatic logic, particularly in nanoscale technologies. In this paper, monolithic 3D integrated adiabatic circuits are introduced where transistor-level monolithic 3D technology is used to implement adiabatic gates. A 45 nm two-tier Mono3D PDK is used to demonstrate the proposed approach. Monolithic inter-tier vias are leveraged to significantly reduce parasitic interconnect capacitance, achieving up to 47% reduction in power-delay product as compared to 2D adiabatic circuits in a 45 nm technology node. 
    more » « less