skip to main content


Title: Pneumatically tunable optofluidic DFB dye laser using corrugated sidewalls

Polydimethylsiloxane-based optofluidics provides a powerful platform for a complete analytical lab-on-chip. Here, we report on a novel on-chip laser source that can be integrated with sample preparation and analysis functions. A corrugated sidewall structure is integrated into a microfluidic channel to form a distributed feedback (DFB) laser using rhodamine 6G dissolved in an ethylene glycol and water solution. Lasing is demonstrated with a threshold pump power of 87.9 µW, corresponding to a pump intensity of52.7mW/cm2. Laser threshold and output power are optimized with respect to rhodamine 6G concentration and core index and found to be in good agreement with a rate equation model. Additionally, the laser can be switched on and off mechanically using a pneumatic cell inducing positive pressure on the grating.

 
more » « less
Award ID(s):
1703058
NSF-PAR ID:
10199288
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
45
Issue:
21
ISSN:
0146-9592; OPLEDP
Page Range / eLocation ID:
Article No. 5978
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Materials with strong second-order (χ<#comment/>(2)) optical nonlinearity, especially lithium niobate, play a critical role in building optical parametric oscillators (OPOs). However, chip-scale integration of low-lossχ<#comment/>(2)materials remains challenging and limits the threshold power of on-chipχ<#comment/>(2)OPO. Here we report an on-chip lithium niobate optical parametric oscillator at the telecom wavelengths using a quasi-phase-matched, high-quality microring resonator, whose threshold power (∼<#comment/>30µ<#comment/>W) is 400 times lower than that in previousχ<#comment/>(2)integrated photonics platforms. An on-chip power conversion efficiency of 11% is obtained from pump to signal and idler fields at a pump power of 93 µW. The OPO wavelength tuning is achieved by varying the pump frequency and chip temperature. With the lowest power threshold among all on-chip OPOs demonstrated so far, as well as advantages including high conversion efficiency, flexibility in quasi-phase-matching, and device scalability, the thin-film lithium niobate OPO opens new opportunities for chip-based tunable classical and quantum light sources and provides a potential platform for realizing photonic neural networks.

     
    more » « less
  2. We have studied spectra and angular distribution of emission in Fabry–Perot cavities formed by two silver mirrors separated by a layer of poly (methyl methacrylate) polymer doped with rhodamine 6G (R6G) dye in low (20g/l) and high (200g/l) concentrations. The frequency of emission radiated to a cavity mode was larger at large outcoupling angles—the “rainbow” effect. At the same time, the angle of the strongest emission was also determined by the cavity size: the larger the cavity, the larger the angle. The angular distribution of emission is commonly dominated by two symmetrical lobes (located at the intersection of the three-dimensional emission cone with a horizontal plane) pointing to the left and to the right of the normal to the sample. Despite the strong Stokes shift in R6G dye, the branch of the cavity dispersion curve obtained in the emission experiment is positioned above the one obtained in the reflection (extinction) experiment. Some dye molecules are poorly coupled to cavity modes. Their emission has very broad angular distribution with the maximum atθ<#comment/>=0∘<#comment/>. The signatures of strong cavity–exciton coupling were observed at high dye concentration (200g/l) but not at low concentration (20g/l). The evidence of the effect of strong coupling on emission is exemplified by a strong difference in the angular distribution of emission in two almost identical cavities, one with and another without strong coupling. Most importantly, we have demonstrated the possibility to control the ground state concentration, the coupling strength, and the dye emission spectra with Q-switched laser pulses.

     
    more » « less
  3. The counterpropagating all-normal dispersion (CANDi) fiber laser is an emerging high-energy single-cavity dual-comb laser source. Its relative timing jitter (RTJ), a critical parameter for dual-comb timing precision and spectral resolution, has not been comprehensively investigated. In this paper, we enhance the state-of-the-art CANDi fiber laser pulse energy from 1 nJ to 8 nJ. We then introduce a reference-free RTJ characterization technique that provides shot-to-shot measurement capability at femtosecond precision. The measurement noise floor reaches1.6×<#comment/>10−<#comment/>7fs2/Hz, and the corresponding integrated measurement precision is only 1.8 fs (1 kHz, 20 MHz). With this characterization tool, we are able to study the physical origin of the CANDi laser’s RTJ in detail. We first verify that the cavity length fluctuation does not contribute to the RTJ. Then we measure the integrated RTJ to be 39 fs (1 kHz, 20 MHz) and identify the pump relative intensity noise (RIN) to be the dominant factor responsible for it. In particular, pump RIN is coupled to the RTJ through the Gordon–Haus effect. Finally, solutions to reduce the free-running CANDi laser’s RTJ are discussed. This work provides a general guideline to improve the performance of compact single-cavity dual-comb systems such as the CANDi laser, benefitting various dual-comb applications.

     
    more » « less
  4. A novel optical frequency division technique, called regenerative harmonic injection locking, is used to transfer the timing stability of an optical frequency comb with a repetition rate in the millimeter wave range (∼<#comment/>300GHz) to a chip-scale mode-locked laser with a∼<#comment/>10GHzrepetition rate. By doing so, the 300 GHz optical frequency comb is optically divided by a factor of30×<#comment/>to 10 GHz. The stability of the mode-locked laser after regenerative harmonic injection locking is∼<#comment/>10−<#comment/>12at 1 s with a1/τ<#comment/>trend. To facilitate optical frequency division, a coupled opto-electronic oscillator is implemented to assist the injection locking process. This technique is exceptionally power efficient, as it uses less than100µ<#comment/>Wof optical power to achieve stable locking.

     
    more » « less
  5. Here, we reportχ<#comment/>(3)-based optical parametric oscillation (OPO) with widely separated signal–idler frequencies from crystalline aluminum nitride microrings pumped at2µ<#comment/>m. By tailoring the width of the microring, OPO reaching toward the telecom and mid-infrared bands with a frequency separation of 64.2 THz is achieved. While dispersion engineering through changing the microring width is capable of shifting the OPO sideband by><#comment/>9THz, the OPO frequency can also be agilely tuned in the ranges of 1 and 0.1 THz, respectively, by shifting the pump wavelength and controlling the chip’s temperature. At high pump powers, the OPO sidebands further evolve into localized frequency comb lines. Such large-frequency-shift OPO with flexible wavelength tunability will lead to enhanced chip-scale light sources.

     
    more » « less