Abstract The vertical dimensions of urban morphology, specifically the heights of trees and buildings, exert significant influence on wind flow fields in urban street canyons and the thermal environment of the urban fabric, subsequently affecting the microclimate, noise levels, and air quality. Despite their importance, these critical attributes are less commonly available and rarely utilized in urban climate models compared to planar land use and land cover data. In this study, we explicitly mapped theheight oftreesandbuildings (HiTAB) across the city of Chicago at 1 m spatial resolution using a data fusion approach. This approach integrates high-precision light detection and ranging (LiDAR) cloud point data, building footprint inventory, and multi-band satellite images. Specifically, the digital terrain and surface models were first created from the LiDAR dataset to calculate the height of surface objects, while the rest of the datasets were used to delineate trees and buildings. We validated the derived height information against the existing building database in downtown Chicago and the Meter-scale Urban Land Cover map from the Environmental Protection Agency, respectively. The co-investigation on trees and building heights offers a valuable initiative in the effort to inform urban land surface parameterizations using real-world data. Given their high spatial resolution, the height maps can be adopted in physical-based and data-driven urban models to achieve higher resolution and accuracy while lowering uncertainties. Moreover, our method can be extended to other urban regions, benefiting from the growing availability of high-resolution urban informatics globally. Collectively, these datasets can substantially contribute to future studies on hyper-local weather dynamics, urban heterogeneity, morphology, and planning, providing a more comprehensive understanding of urban environments.
more »
« less
High Resolution Viewscape Modeling Evaluated Through Immersive Virtual Environments
Visual characteristics of urban environments influence human perception and behavior, including choices for living, recreation and modes of transportation. Although geospatial visualizations hold great potential to better inform urban planning and design, computational methods are lacking to realistically measure and model urban and parkland viewscapes at sufficiently fine-scale resolution. In this study, we develop and evaluate an integrative approach to measuring and modeling fine-scale viewscape characteristics of a mixed-use urban environment, a city park. Our viewscape approach improves the integration of geospatial and perception elicitation techniques by combining high-resolution lidar-based digital surface models, visual obstruction, and photorealistic immersive virtual environments (IVEs). We assessed the realism of our viewscape models by comparing metrics of viewscape composition and configuration to human subject evaluations of IVEs across multiple landscape settings. We found strongly significant correlations between viewscape metrics and participants’ perceptions of viewscape openness and naturalness, and moderately strong correlations with landscape complexity. These results suggest that lidar-enhanced viewscape models can adequately represent visual characteristics of fine-scale urban environments. Findings also indicate the existence of relationships between human perception and landscape pattern. Our approach allows urban planners and designers to model and virtually evaluate high-resolution viewscapes of urban parks and natural landscapes with fine-scale details never before demonstrated.
more »
« less
- Award ID(s):
- 1737563
- PAR ID:
- 10203617
- Date Published:
- Journal Name:
- ISPRS International Journal of Geo-Information
- Volume:
- 9
- Issue:
- 7
- ISSN:
- 2220-9964
- Page Range / eLocation ID:
- 445
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Williamson, Grant (Ed.)Terrestrial LiDAR scans (TLS) offer a rich data source for high-fidelity vegetation characterization, addressing the limitations of traditional fuel sampling methods by capturing spatially explicit distributions that have a significant impact on fire behavior. However, large volumes of complex, high resolution data are difficult to use directly in wildland fire models. In this study, we introduce a novel method that employs a voxelization technique to convert high-resolution TLS data into fine-grained reference voxels, which are subsequently aggregated into lower-fidelity fuel cells for integration into physics-based fire models. This methodology aims to transform the complexity of TLS data into a format amenable for integration into wildland fire models, while retaining essential information about the spatial distribution of vegetation. We evaluate our approach by comparing a range of aggregate geometries in simulated burns to laboratory measurements. The results show insensitivity to fuel cell geometry at fine resolutions (2–8 cm), but we observe deviations in model behavior at the coarsest resolutions considered (16 cm). Our findings highlight the importance of capturing the fine scale spatial continuity present in heterogeneous tree canopies in order to accurately simulate fire behavior in coupled fire-atmosphere models. To the best of our knowledge, this is the first study to examine the use of TLS data to inform fuel inputs to a physics based model at a laboratory scale.more » « less
-
Audio-visual emotion recognition (AVER) has been an important research area in human-computer interaction (HCI). Traditionally, audio-visual emotional datasets and corresponding models derive their ground truths from annotations obtained by raters after watching the audio-visual stimuli. This conventional method, however, neglects the nuanced human perception of emotional states, which varies when annotations are made under different emotional stimuli conditions—whether through unimodal or multimodal stimuli. This study investigates the potential for enhanced AVER system performance by integrating diverse levels of annotation stimuli, reflective of varying perceptual evaluations. We propose a two-stage training method to train models with the labels elicited by audio-only, face-only, and audio-visual stimuli. Our approach utilizes different levels of annotation stimuli according to which modality is present within different layers of the model, effectively modeling annotation at the unimodal and multi-modal levels to capture the full scope of emotion perception across unimodal and multimodal contexts. We conduct the experiments and evaluate the models on the CREMA-D emotion database. The proposed methods achieved the best performances in macro-/weighted-F1 scores. Additionally, we measure the model calibration, performance bias, and fairness metrics considering the age, gender, and race of the AVER systems.more » « less
-
Audio-visual representation learning aims to develop systems with human-like perception by utilizing correlation between auditory and visual information. However, current models often focus on a limited set of tasks, and generalization abilities of learned representations are unclear. To this end, we propose the AV-SUPERB benchmark that enables general-purpose evaluation of unimodal audio/visual and bimodal fusion representations on 7 datasets covering 5 audio-visual tasks in speech and audio processing. We evaluate 5 recent self-supervised models and show that none of these models generalize to all tasks, emphasizing the need for future study on improving universal model performance. In addition, we show that representations may be improved with intermediate-task fine-tuning and audio event classification with AudioSet serves as a strong intermediate task. We release our benchmark with evaluation code and a model submission platform to encourage further research in audio-visual learning.more » « less
-
Abstract This study examines the role of human dynamics within Geospatial Artificial Intelligence (GeoAI), highlighting its potential to reshape the geospatial research field. GeoAI, emerging from the confluence of geospatial technologies and artificial intelligence, is revolutionizing our comprehension of human-environmental interactions. This revolution is powered by large-scale models trained on extensive geospatial datasets, employing deep learning to analyze complex geospatial phenomena. Our findings highlight the synergy between human intelligence and AI. Particularly, the humans-as-sensors approach enhances the accuracy of geospatial data analysis by leveraging human-centric AI, while the evolving GeoAI landscape underscores the significance of human–robot interaction and the customization of GeoAI services to meet individual needs. The concept of mixed-experts GeoAI, integrating human expertise with AI, plays a crucial role in conducting sophisticated data analyses, ensuring that human insights remain at the forefront of this field. This paper also tackles ethical issues such as privacy and bias, which are pivotal for the ethical application of GeoAI. By exploring these human-centric considerations, we discuss how the collaborations between humans and AI transform the future of work at the human-technology frontier and redefine the role of AI in geospatial contexts.more » « less
An official website of the United States government

