Abstract The vertical dimensions of urban morphology, specifically the heights of trees and buildings, exert significant influence on wind flow fields in urban street canyons and the thermal environment of the urban fabric, subsequently affecting the microclimate, noise levels, and air quality. Despite their importance, these critical attributes are less commonly available and rarely utilized in urban climate models compared to planar land use and land cover data. In this study, we explicitly mapped theheight oftreesandbuildings (HiTAB) across the city of Chicago at 1 m spatial resolution using a data fusion approach. This approach integrates high-precision light detection and ranging (LiDAR) cloud point data, building footprint inventory, and multi-band satellite images. Specifically, the digital terrain and surface models were first created from the LiDAR dataset to calculate the height of surface objects, while the rest of the datasets were used to delineate trees and buildings. We validated the derived height information against the existing building database in downtown Chicago and the Meter-scale Urban Land Cover map from the Environmental Protection Agency, respectively. The co-investigation on trees and building heights offers a valuable initiative in the effort to inform urban land surface parameterizations using real-world data. Given their high spatial resolution, the height maps can be adopted in physical-based and data-driven urban models to achieve higher resolution and accuracy while lowering uncertainties. Moreover, our method can be extended to other urban regions, benefiting from the growing availability of high-resolution urban informatics globally. Collectively, these datasets can substantially contribute to future studies on hyper-local weather dynamics, urban heterogeneity, morphology, and planning, providing a more comprehensive understanding of urban environments.
more »
« less
High Resolution Viewscape Modeling Evaluated Through Immersive Virtual Environments
Visual characteristics of urban environments influence human perception and behavior, including choices for living, recreation and modes of transportation. Although geospatial visualizations hold great potential to better inform urban planning and design, computational methods are lacking to realistically measure and model urban and parkland viewscapes at sufficiently fine-scale resolution. In this study, we develop and evaluate an integrative approach to measuring and modeling fine-scale viewscape characteristics of a mixed-use urban environment, a city park. Our viewscape approach improves the integration of geospatial and perception elicitation techniques by combining high-resolution lidar-based digital surface models, visual obstruction, and photorealistic immersive virtual environments (IVEs). We assessed the realism of our viewscape models by comparing metrics of viewscape composition and configuration to human subject evaluations of IVEs across multiple landscape settings. We found strongly significant correlations between viewscape metrics and participants’ perceptions of viewscape openness and naturalness, and moderately strong correlations with landscape complexity. These results suggest that lidar-enhanced viewscape models can adequately represent visual characteristics of fine-scale urban environments. Findings also indicate the existence of relationships between human perception and landscape pattern. Our approach allows urban planners and designers to model and virtually evaluate high-resolution viewscapes of urban parks and natural landscapes with fine-scale details never before demonstrated.
more »
« less
- Award ID(s):
- 1737563
- PAR ID:
- 10203617
- Date Published:
- Journal Name:
- ISPRS International Journal of Geo-Information
- Volume:
- 9
- Issue:
- 7
- ISSN:
- 2220-9964
- Page Range / eLocation ID:
- 445
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Williamson, Grant (Ed.)Terrestrial LiDAR scans (TLS) offer a rich data source for high-fidelity vegetation characterization, addressing the limitations of traditional fuel sampling methods by capturing spatially explicit distributions that have a significant impact on fire behavior. However, large volumes of complex, high resolution data are difficult to use directly in wildland fire models. In this study, we introduce a novel method that employs a voxelization technique to convert high-resolution TLS data into fine-grained reference voxels, which are subsequently aggregated into lower-fidelity fuel cells for integration into physics-based fire models. This methodology aims to transform the complexity of TLS data into a format amenable for integration into wildland fire models, while retaining essential information about the spatial distribution of vegetation. We evaluate our approach by comparing a range of aggregate geometries in simulated burns to laboratory measurements. The results show insensitivity to fuel cell geometry at fine resolutions (2–8 cm), but we observe deviations in model behavior at the coarsest resolutions considered (16 cm). Our findings highlight the importance of capturing the fine scale spatial continuity present in heterogeneous tree canopies in order to accurately simulate fire behavior in coupled fire-atmosphere models. To the best of our knowledge, this is the first study to examine the use of TLS data to inform fuel inputs to a physics based model at a laboratory scale.more » « less
-
Hamer, Gabriel (Ed.)Abstract Many species distribution maps indicate the ranges of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) overlap in Florida despite the well-documented range reduction of Ae. aegypti. Within the last 30 yr, competitive displacement of Ae. aegypti by Ae. albopictus has resulted in partial spatial segregation of the two species, with Ae. aegypti persisting primarily in urban refugia. We modeled fine-scale distributions of both species, with the goal of capturing the outcome of interspecific competition across space by building habitat suitability maps. We empirically parameterized models by sampling 59 sites in south and central Florida over time and incorporated climatic, landscape, and human population data to identify predictors of habitat suitability for both species. Our results show human density, precipitation, and urban land cover drive Ae. aegypti habitat suitability, compared with exclusively climatic variables driving Ae. albopictus habitat suitability. Remotely sensed variables (macrohabitat) were more predictive than locally collected metrics (microhabitat), although recorded minimum daily temperature showed significant, inverse relationships with both species. We detected minor Aedes habitat segregation; some periurban areas that were highly suitable for Ae. albopictus were unsuitable for Ae. aegypti. Fine-scale empirical models like those presented here have the potential for precise risk assessment and the improvement of operational applications to control container-breeding Aedes mosquitoes.more » « less
-
Object detection plays a pivotal in autonomous driving by enabling the vehicles to perceive and comprehend their environment, thereby making informed decisions for safe navigation. Camera data provides rich visual context and object recognition, while LiDAR data offers precise distance measurements and 3D mapping. Multi-modal object detection models are gaining prominence in incorporating these data types, which is essential for the comprehensive perception and situational awareness needed in autonomous vehicles. Although graphics processing units (GPUs) and field-programmable gate arrays (FPGAs) are promising hardware options for this application, the complex knowledge required to efficiently adapt and optimize multi-modal detection models for FPGAs presents a significant barrier to their utilization on this versatile and efficient platform. In this work, we evaluate the performance of camera and LiDARbased detection models on GPU and FPGA hardware, aiming to provide a specialized understanding for translating multi-modal detection models to suit the unique architecture of heterogeneous hardware platforms in autonomous driving systems. We focus on critical metrics from both system and model performance aspects. Based on our quantitative implications, we propose foundational insights and guidance for the design of camera and LiDAR-based multi-modal detection models on diverse hardware platforms.more » « less
-
Abstract The accurate modeling of urban microclimate is a challenging task given the high surface heterogeneity of urban land cover and the vertical structure of street morphology. Recent years have witnessed significant efforts in numerical modeling and data collection of the urban environment. Nonetheless, it is difficult for the physical‐based models to fully utilize the high‐resolution data under the constraints of computing resources. The advancement in machine learning (ML) techniques offers the computational strength to handle the massive volume of data. In this study, we proposed a modeling framework that uses ML approach to estimate point‐scale street‐level air temperature from the urban‐resolving meso‐scale climate model and a suite of hyper‐resolution urban geospatial data sets, including three‐dimensional urban morphology, parcel‐level land use inventory, and weather observations from a sensor network. We implemented this approach in the City of Chicago as a case study to demonstrate the capability of the framework. The proposed approach vastly improves the resolution of temperature predictions in cities, which will help the city with walkability, drivability, and heat‐related behavioral studies. Moreover, we tested the model's reliability on out‐of‐sample locations to investigate the modeling uncertainties and the application potentials to the other areas. This study aims to gain insights into next‐gen urban climate modeling and guide the observation efforts in cities to build the strength for the holistic understanding of urban microclimate dynamics.more » « less