skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A General Framework for Multi-fidelity Bayesian Optimization with Gaussian Processes
How can we efficiently gather information to optimize an unknown function, when presented with multiple, mutually dependent information sources with different costs? For example, when optimizing a physical system, intelligently trading off computer simulations and real-world tests can lead to significant savings. Existing multi-fidelity Bayesian optimization methods, such as multi-fidelity GP-UCB or Entropy Search-based approaches, either make simplistic assumptions on the interaction among different fidelities or use simple heuristics that lack theoretical guarantees. In this paper, we study multifidelity Bayesian optimization with complex structural dependencies among multiple outputs, and propose MF-MI-Greedy, a principled algorithmic framework for addressing this problem. In particular, we model different fidelities using additive Gaussian processes based on shared latent relationships with the target function. Then we use cost-sensitive mutual information gain for efficient Bayesian optimization. We propose a simple notion of regret which incorporates the varying cost of different fidelities, and prove that MF-MI-Greedy achieves low regret. We demonstrate the strong empirical performance of our algorithm on both synthetic and real-world datasets.  more » « less
Award ID(s):
1645832
PAR ID:
10206970
Author(s) / Creator(s):
Editor(s):
Chaudhuri, K
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
89
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. By querying approximate surrogate models of different fidelity as available information sources, Multi-Fidelity Bayesian Optimization (MFBO) aims at optimizing unknown functions that are costly or infeasible to evaluate. Existing MFBO methods often assume that approximate surrogates have consistently high or low fidelity across the input domain. However, approximate evaluations from the same surrogate can have different fidelity at different input regions due to data availability and model constraints, especially when considering machine learning surrogates. In this work, we investigate MFBO when multi-fidelity approximations have input-dependent fidelity. By explicitly capturing input dependency for multi-fidelity queries in a Gaussian Process (GP), our new input-dependent MFBO (iMFBO) with learnable noise models better captures the fidelity of each information source in an intuitive way. We further design a new acquisition function for iMFBO and prove that the queries selected by iMFBO have higher quality than those by naive MFBO methods, with a derived sub-linear regret bound. Experiments on both synthetic and real-world data demonstrate its superior empirical performance. 
    more » « less
  2. Abstract Bayesian optimization (BO) is a sequential optimization strategy that is increasingly employed in a wide range of areas including materials design. In real world applications, acquiring high-fidelity (HF) data through physical experiments or HF simulations is the major cost component of BO. To alleviate this bottleneck, multi-fidelity (MF) methods are increasingly used to forgo the sole reliance on the expensive HF data and reduce the sampling costs by querying inexpensive low-fidelity (LF) sources whose data are correlated with HF samples. Existing multi-fidelity BO (MFBO) methods operate under the following two assumptions: (1) Leveraging global (rather than local) correlation between HF and LF sources, and (2) Associating all the data sources with the same noise process. These assumptions dramatically reduce the performance of MFBO when LF sources are only locally correlated with the HF source or when the noise variance varies across the data sources. To dispense with these incorrect assumptions, we propose an MF emulation method that (1) learns a noise model for each data source, and (2) enables BO to leverage highly biased LF sources which are only locally correlated with the HF source. We illustrate the performance of our method through analytical examples and engineering problems on materials design. 
    more » « less
  3. Nonlinear state-space models are ubiquitous in modeling real-world dynamical systems. Sequential Monte Carlo (SMC) techniques, also known as particle methods, are a well-known class of parameter estimation methods for this general class of state-space models. Existing SMC-based techniques rely on excessive sampling of the parameter space, which makes their computation intractable for large systems or tall data sets. Bayesian optimization techniques have been used for fast inference in state-space models with intractable likelihoods. These techniques aim to find the maximum of the likelihood function by sequential sampling of the parameter space through a single SMC approximator. Various SMC approximators with different fidelities and computational costs are often available for sample- based likelihood approximation. In this paper, we propose a multi-fidelity Bayesian optimization algorithm for the inference of general nonlinear state-space models (MFBO-SSM), which enables simultaneous sequential selection of parameters and approximators. The accuracy and speed of the algorithm are demonstrated by numerical experiments using synthetic gene expression data from a gene regulatory network model and real data from the VIX stock price index. 
    more » « less
  4. In black-box optimization problems, we aim to maximize an unknown objective function, where the function is only accessible through feedbacks of an evaluation or simulation oracle. In real-life, the feedbacks of such oracles are often noisy and available after some unknown delay that may depend on the computation time of the oracle. Additionally, if the exact evaluations are expensive but coarse approximations are available at a lower cost, the feedbacks can have multi-fidelity. In order to address this problem, we propose a generic extension of hierarchical optimistic tree search (HOO), called ProCrastinated Tree Search (PCTS), that flexibly accommodates a delay and noise-tolerant bandit algorithm. We provide a generic proof technique to quantify regret of PCTS under delayed, noisy, and multi-fidelity feedbacks. Specifically, we derive regret bounds of PCTS enabled with delayed-UCB1 (DUCB1) and delayed-UCB-V (DUCBV) algorithms. Given a horizon T, PCTS retains the regret bound of non-delayed HOO for expected delay of O(log T), and worsens by T^((1-α)/(d+2)) for expected delays of O(T^(1-α)) for α ∈ (0,1]. We experimentally validate on multiple synthetic functions and hyperparameter tuning problems that PCTS outperforms the state-of-the-art black-box optimization methods for feedbacks with different noise levels, delays, and fidelity. 
    more » « less
  5. Bayesian optimization (BO) is a powerful paradigm for optimizing expensive black-box functions. Traditional BO methods typically rely on separate hand-crafted acquisition functions and surrogate models for the underlying function, and often operate in a myopic manner. In this paper, we propose a novel direct regret optimization approach that jointly learns the optimal model and non-myopic acquisition by distilling from a set of candidate models and acquisitions, and explicitly targets minimizing the multi-step regret. Our framework leverages an ensemble of Gaussian Processes (GPs) with varying hyperparameters to generate simulated BO trajectories, each guided by an acquisition function chosen from a pool of conventional choices, until a Bayesian early stop criterion is met. These simulated trajectories, capturing multi-step exploration strategies, are used to train an end-to-end decision transformer that directly learns to select next query points aimed at improving the ultimate objective. We further adopt a dense training–sparse learning paradigm: The decision transformer is trained offline with abundant simulated data sampled from ensemble GPs and acquisitions, while a limited number of real evaluations refine the GPs online. Experimental results on synthetic and real-world benchmarks suggest that our method consistently outperforms BO baselines, achieving lower simple regret and demonstrating more robust exploration in high-dimensional or noisy settings. 
    more » « less